
Extracted from:

Pragmatic Unit Testing
in Java 8 with JUnit

This PDF file contains pages extracted from Pragmatic Unit Testingin Java 8 with
JUnit, published by the Pragmatic Bookshelf. For more information or to purchase

a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2015 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Pragmatic Unit Testing
in Java 8 with JUnit

Jeff Langr

with Andy Hunt
Dave Thomas

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Susannah Davidson Pfalzer (editor)
Potomac Indexing, LLC (indexer)
Eileen Cohen (copyeditor)
Dave Thomas (typesetter)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-94122-259-1
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—March 2015

https://pragprog.com
rights@pragprog.com

In this chapter we’ll work through a small example of writing a unit test. You’ll
learn how to set up your project and how to add a test class, and you’ll see
what a test method looks like. Most important, you’ll learn how to get JUnit
to run your new, passing test.

Reasons to Write a Unit Test
Pat has just completed work on a small feature change, adding a couple dozen
lines to the system. He’s fairly confident in his change, but it’s been a while
since he’s tried things out in the deployed system. Pat runs the build script,
which packages and deploys the change to the local web server. He pulls up
the application in his browser, navigates to the appropriate screen, enters a
bit of data, clicks submit, and…stack trace!

Pat stares at the screen for a moment, then the code. Aha! Pat notes that he
forgot to initialize a field. He makes the fix, runs the build script again, cranks
up the application, enters data, clicks submit, and…hmm, that’s not the right
amount. Oops. This time, it takes a bit longer to decipher the problem. Pat
fires up his debugger and after a few minutes discovers an off-by-one error
in indexing an array. He once again repeats the cycle of fix, deploy, navigate
the GUI, enter data, and verify results.

Happily, Pat’s third fix attempt has been the charm. But he spent about fifteen
minutes working through the three cycles of code—manual test—fix.

Dale chooses to work differently. Each time she writes a small bit of code,
she adds a unit test that verifies the small change she added to the system.
She then runs all her unit tests. They run in seconds, so she’s not waiting
long to find out whether or not she can move on.

If there’s a problem, Dale stops immediately and fixes it. Her problems are
easier to uncover, because she’s added only a few lines of code each time
instead of piling gobs of new code atop her mistakes.

Dale retains the tests permanently along with the rest of the system. They
continue to pay off each time she or anyone else changes code in the same
area. These unit tests support regression testing—she no longer needs to
spend several minutes verifying that new changes break no existing behavior.

Dale’s tests also save Pat and everyone else on the team significant amounts
of time when it comes to understanding what the system does. “How does
the system handle the combination of X and Y?” asks Madhu, the business
analyst. Pat’s response, more often than not, is “I don’t know, let me take a
look at the code.” Sometimes Pat can answer the question in a minute or two,

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/utj2
http://forums.pragprog.com/forums/utj2

but frequently he ends up digging about for a half hour or more. Meanwhile,
Dale looks to her unit tests for an immediate answer.

Let’s follow in Dale’s footsteps and start learning how to write small, focused
unit tests. We’ll first make sure we understand basic JUnit concepts.

Learning JUnit Basics: Our First Passing Test
For our first example, we’ll write tests against a small class named ScoreCollec-
tion. Its goal is to return the mean (average) for a collection of scoreable objects
(things that answer with a score).

For this first example, you’ll see Eclipse screenshots. The screenshots are
here to guide you through setting up and using JUnit for the first time. After
this chapter, you won’t see screenshots and you won’t need them.

If you’re not using Eclipse, good news: your JUnit tests will look the same
whether you use Eclipse, IntelliJ IDEA, NetBeans, or some other development
environment. How you set up your project to use JUnit will differ, and the
way JUnit looks and feels will differ a bit from IDE to IDE. For that reason,
we’ve provided comparable screenshots from IntelliJ IDEA and NetBeans in
Appendix 1, Setting Up JUnit in IntelliJ IDEA and NetBeans, on page ?.

Here’s the code we want to test:

iloveyouboss/1/src/iloveyouboss/Scoreable.java
package iloveyouboss;

@FunctionalInterface
public interface Scoreable {

int getScore();
}

iloveyouboss/1/src/iloveyouboss/ScoreCollection.java
package iloveyouboss;

import java.util.*;

public class ScoreCollection {
private List<Scoreable> scores = new ArrayList<>();

public void add(Scoreable scoreable) {
scores.add(scoreable);

}

public int arithmeticMean() {
int total = scores.stream().mapToInt(Scoreable::getScore).sum();
return total / scores.size();

}

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/utj2/code/iloveyouboss/1/src/iloveyouboss/Scoreable.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/1/src/iloveyouboss/ScoreCollection.java
http://pragprog.com/titles/utj2
http://forums.pragprog.com/forums/utj2

}

A ScoreCollection class accepts a Scoreable instance through its add() method. A
Scoreable object is simply one that can return an int score value.

Feel free to enter the source directly into your development environment. You
can also download the source from pragprog.com/book/utj2/source_code. Personally,
we’re still learning to master the fun things in Java 8 such as lambdas, so
we’d just as soon type the code ourselves. We’ve found that typing the code
instead of simply pasting it helps us learn better.

Configuring Our Project
We’re going to put our tests in the same package (iloveyouboss—we’ll explain
the package name in the next chapter) as ScoreCollection. In Eclipse, we separate
the tests and production code by putting the tests in one source folder (test)
and the production code in another (src).

Let’s create a source folder named test before continuing. In Eclipse, the easiest
way to do this is in the Package Explorer. Select the project, right-click to
bring up the context menu, and select New ▶ Source Folder. Type the name
test as the Folder Name and click Finish.

Next, we’ll create a JUnit test class for ScoreCollection. In Eclipse, here’s one
way to do this:

1. Select the ScoreCollection.java entry from the Package Explorer.
2. Right-click to bring up the context menu.
3. Select New ▶ JUnit Test Case.

The following figure shows what the menu looks like in Eclipse:

• Click HERE to purchase this book now. discuss

Learning JUnit Basics: Our First Passing Test • 7

http://pragprog.com/book/utj2/source_code
http://pragprog.com/titles/utj2
http://forums.pragprog.com/forums/utj2

Eclipse provides a busy wizard dialog, but we’ll rarely need to change much
in it. We simply need to tell Eclipse that the source folder is iloveyouboss/test
instead of iloveyouboss/src. The one small thing we must change is highlighted
in the Figure 1, JUnit Test Case wizard in Eclipse, on page 9.

We click Finish to create the test class. Since this is the first time we’re creat-
ing a test for the iloveyouboss project, Eclipse tells us that we need to add sup-
port for JUnit 4 to the project. (In case you’re wondering, JUnit 4 has been
available since 2006. You might find some older projects that use JUnit 3,
which is fairly easy to figure out after you learn JUnit 4.) The following figure
shows you this minor distraction:

Sounds good to us—let’s click OK.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/utj2
http://forums.pragprog.com/forums/utj2

Figure 1—JUnit Test Case wizard in Eclipse

Understanding the JUnit Test Bits
Eclipse creates a nice little template test for us, all ready to run:

iloveyouboss/2/test/iloveyouboss/ScoreCollectionTest.java
package iloveyouboss;

import static org.junit.Assert.*;❶
import org.junit.*;❷

public class ScoreCollectionTest {❸

@Test❹
public void test() {❺

fail("Not yet implemented");❻
}

}

• Click HERE to purchase this book now. discuss

Learning JUnit Basics: Our First Passing Test • 9

http://media.pragprog.com/titles/utj2/code/iloveyouboss/2/test/iloveyouboss/ScoreCollectionTest.java
http://pragprog.com/titles/utj2
http://forums.pragprog.com/forums/utj2

Stepping through the important bits:

❶ The fail static method comes from the org.junit.Assert class.

❷ The @Test annotation comes from the org.junit package.

❸ The test-class name is ScoreCollectionTest. Many teams adopt the standard
of appending Test to the name of the class being tested (for now, the target
class) to derive the test-class name. (You’ll see later that there are good
reasons to create more than one test class for a given target.)

❹ JUnit knows to execute the test method as a test because it’s marked with
the @Test annotation. You can have other methods in the test class that
are not tests, and JUnit doesn’t try to execute them as such.

❺ JUnit creates a single test method (or simply, a single test) in the test
class. Its name—an important piece of information—defaults to test. We’ll
always want to change the test name to something meaningful.

❻ Eclipse adds a deliberate test-failure point as the default body of the test.
When JUnit executes this test, fail() causes a test failure, at which point
JUnit displays the informative failure message Not yet implemented. Our job
is to replace this stub failure statement with a real test.

Running JUnit
Let’s see what happens when we run JUnit against our project. From the
Package Explorer, click the project (iloveyouboss) and right-click to bring up its
context menu. Select Run As ▶ JUnit Test. You’ll get something that looks
like Figure 2, Running a JUnit Test, on page 11.

The JUnit view shows information about the tests that JUnit just ran:

The most prominent visual feature of the JUnit view is the solid red bar,
indicating that one or more tests failed. If colors aren’t your thing, you can

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/utj2
http://forums.pragprog.com/forums/utj2

Figure 2—Running a JUnit Test

also look at the numeric summaries immediately above the red bar. In our
example, Runs shows that one test ran out of one total, we had zero errors,
and one of the tests demonstrated a failure.

The two panes below the red bar provide detailed information about JUnit’s
test run. The top pane provides a hierarchical view of test classes and the
test methods contained within. Selecting a failed test from the top pane pro-
vides a stack trace in the bottom pane. Because Eclipse’s version of JUnit
selected our sole test, we see in the bottom pane that it threw a java.lang.Asser-
tionError at line 10 in ScoreCollectionTest. The exception carries the message Not yet
implemented, which we can trace directly back to our test-class code. Cool!

At the top of the JUnit view you can see a number of tool icons (for which
hover help is available). Don’t fear experimenting with them. The most useful
is the Rerun Test icon, which runs once again the set of tests you currently
see in the JUnit view. Try it out.

The red of JUnit is strong and mildly off-putting. We’ll try to ingrain an
instinctive reaction of noting any red bars we see, calmly fixing the code or
tests, then rerunning the tests until we no longer see red. Think “bull on
Valium.”

To get rid of our red bar, remove the fail method call:

• Click HERE to purchase this book now. discuss

Learning JUnit Basics: Our First Passing Test • 11

http://pragprog.com/titles/utj2
http://forums.pragprog.com/forums/utj2

iloveyouboss/3/test/iloveyouboss/ScoreCollectionTest.java
public class ScoreCollectionTest {

@Test
public void test() {
}

}

(You’ll now see only pertinent parts of code in the book. Remember, you can
download the full source from the PragProg site.)1

Now, rerun the tests. We wouldn’t dare deprive you of seeing the glorious,
luminescent JUnit green bar on your own screen. No screenshot here; go see
for yourself. We have a passing test!

The passing test clarifies an important design feature of JUnit. When JUnit
calls a test method, it executes statements top-to-bottom. If JUnit runs
through to the end of the test method without encountering an explicit fail (or
an assertion that fails; we’ll see this very soon), the test passes.

Our test is empty, so it will always hit the end immediately and thus pass.

If you got the green bar, congratulations! Setting things up is often the
hardest part. If you’re still struggling, seek help from a colleague or on the
Internet, or drop a question in the forum for this book.2

You’ve learned most of what you need to know about how to work with JUnit
in your IDE, so you’ll see code and no more screenshots from here on out.
You should strive to master your IDE of choice, though. Eclipse and other
IDEs provide keyboard shortcuts to kick off tests, rerun them, switch between
the tests and the editors, and so on. Ingraining the shortcuts will remove one
more impediment to effective coding.

1. For your pleasure, one more time: https://pragprog.com/titles/utj2/source_code.
2. Click the Discuss link at https://pragprog.com/book/utj2/pragmatic-unit-testing-in-java-8-with-junit.

• 12

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/utj2/code/iloveyouboss/3/test/iloveyouboss/ScoreCollectionTest.java
https://pragprog.com/titles/utj2/source_code
https://pragprog.com/book/utj2/pragmatic-unit-testing-in-java-8-with-junit
http://pragprog.com/titles/utj2
http://forums.pragprog.com/forums/utj2

