Extracted from:

with CVS

This PDF file contains pages extracts from Pragmatic Version Control, one of
the Pragmatic Starter Kit series of books for project teams. For more
information, visit http://www.pragmaticprogrammer.com/starter_kit.

Note: This extract contains some colored text (particularly in code listing).
This is available only in online versions of the books. The printed versions
are black and white. Pagination might vary between the online and printer
versions; the content is otherwise identical.

Copyright © 2004 The Pragmatic Programmers, LLC. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any

form, or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the
prior consent of the publisher.



Chapter 10

All projects rely to some extent on external libraries: C pro-
grams use the 1ibc library, Java programs use rt. jar, and
so on. Should these libraries form part of your personal work-
space?

To answer that question, ask yourself another. You need to
be able to rebuild a working program at some arbitrary time
in the future. Will you be able to use the versions of these
libraries that will be available then?

If you feel comfortable that the libraries used by your code will
be available (and compatible) over the life of your application,
then there’s no need to do anything special with them; just
use them as installed on your machine.

Looking beyond standard language facilities, many projects
include other, less stable, libraries in their projects. For ex-
ample, many Java developers will use the JUnit framework!
to test their code. Compared to the standard libraries, these
frameworks are fairly volatile (as of June 2003, JUnit is al-
ready up to version 3.8). Although the changes between ver-
sions are mostly compatible, there can be changes that af-
fect your application.? As a result, we’d recommend that you

1http ://www. junit.org
2For example, we've seen interactions between the Ant build tool and var-
ious revisions of JUnit.



CHAPTER 10. THIRD-PARTY CODE <« 120

include these libraries in your workspace, and (by extension)
in your project’s repositories.

Having made the decision that you want to include a third
party library in your workspace and repository, you now have
to decide what to include and where to put it.

The first decision is what files to include. This is relatively
easy. If you use the library in the form distributed by the
maker, and you feel confident that the library will continue
to work unmodified through the life of the application, then
storing the binary form of the library is all that is needed.
We suggest putting all these libraries in subdirectories of a
top-level vendor/ directory. If the library is architecture-
independent (for example a Java . jar file), then it can simply
sit in a subdirectory called 1ib/. If instead you have libraries
that depend on the target architecture (and assuming your
application is targeted at more than one architecture) you'll
need to have subdirectories below vendor/ for each architec-
ture and operating system combination. A common naming
scheme for these subdirectories is to use arch-os where arch
is the target architecture (i586 for an Intel Pentium, ppc for
a PowerPC, and so on) and os is the operating system (linux,
win2k, and so on). Always remember to use the -kb flag when
importing or adding a binary file (such as a .DLL (dynamic link
library) or other library) to CVS.

Languages such as C and C++ require that you include source
header files in application code that uses a particular library.
These header files are supplied with the library, and should
also be stored in the workspace and repository. We suggest
storing them in an include/ subdirectory beneath vendor.
Structure the subdirectories of vendor/include/ in such a
way that the compilers can find the libraries’ include files nat-
urally. As an example, consider a C library called datetime
which performs date and time calculations. It comes with a
binary library archive, 1ibdatetime.a, and two header files,
datetime.h and extras.h. The datetime.h header library
is intended to be installed at the top level of the include hi-
erarchy, while extras.h is expected to be in a subdirectory
called dt/. That is, a program that used both header files
would normally start:

Prepared exclusively for xxyyxxzzxx



CHAPTER 10. THIRD-PARTY CODE <« 121

proj/ — top level of project
- vendor/
—— 1lib/
L —libdatetime.a
—— include/
—— datetime.h
—dt/

L — extras.h

Figure 10.1: SAMPLE REPOSITORY WITH THIRD PARTY LIBRARY

#include <datetime>
#include <dt/extras>

/7.
In this case, we’'d organize our repository (and our workspace)
as shown in Figure 10.1.

Integrating with the Build Environment

If you include vendor libraries or header files in your work-
space, you'll need to make sure that your compilers, linkers,
and IDEs can get to them. There’s a minor problem: you
need to make sure that you don’t check anything in to the
repository that contains absolute path names (as this might
not work on some other developer’s machine). Instead, you
have a couple of options:

1. Arrange your build tools so that all path names are rela-
tive to (say) the top level project directory. This is work-
able if you're using an external build tool such as “make”
or “ant,” but it can get tricky.

2. Set up some external environment variable to point to
the top of the project tree, and make all references in the
build relative to this variable. This allows each developer
to have different values in the external variable, but then
to share a common build environment layout.

The external variable need not be a true operating sys-
tem environment variable. The Eclipse IDE, for exam-
ple, allows each user to set internal variables, and then

Prepared exclusively for xx



LIBRARIES WITH SOURCE CODE <« 122

to have a common shared build structure that refer-
ences these variables. This means that all developers
can share a common Eclipse build definition, but that
developers can still install the source in different loca-
tions.

We recommend the second approach.

10.1 Libraries With Source Code

Sometimes a library comes with source code (or is distributed
only as source code). If you have both source and binary
versions of the library available, which should you store in
the repository, and how should you set up your workspace?

The answer is an exercise in risk management. Having the
source available means that you are always in the position
(technically, at least) to fix bugs and add features, something
you can’'t do with a binary library. This is clearly a good
thing. At the same time, including the source code for all
the libraries used by your project can slow down builds and
complicate the structure of your project. It also gives future
maintainers a headache. If there’s a bug, do they need to
consider potential changes to the library source, or can they
concentrate on the code written by your organization?

Our recommendation is to add vendor source to your reposi-
tory, but to treat it specially. To do this, you have to do a bit
of role-playing.

Imagine for a minute that you are the writer of this particular
library, and that every now and then you release an updated
version of the code to your user base. Being a high-quality
library writer, you naturally put all your source in a version
control system, and practice all the necessary release control
procedures.

Now come back from the role-play (remember, breathe in,
breathe out, breathe in, breathe out). In an ideal world, we
should be able to hook straight in to our vendor’s repository
and extract releases directly from there. But we can’t, so we
have to do the work ourselves. Whenever we receive code, bug
fixes, and new releases from a vendor, we have to pretend that

Prepared exclusively for xxyyxxzzxx



LIBRARIES WITH SOURCE CODE <« 123

we had generated the code, and handle it in our version con-
trol system as if we were the vendor handling it in theirs. This
turns out to be simpler than it sounds.

Importing the Initial Source

When we first receive the source code for a third-party library,
we need to import it into our repository. We recommend keep-
ing this code separate from the code of your project. If you
anticipate importing code from multiple sources over time, it
probably makes sense to keep it all under a common top-level
directory; we suggest calling it vendorsrc/ (to differentiate it
from vendor/, which contains libraries and header files).

To make this more concrete, let’s assume that we've decided
to use version 4.3 of the GNU readline library in our project
(after checking the license terms, of course).

We start by downloading the latest sources from the GNU ftp
site. We'll store this in a temporary directory.

"> cd tmp

tmp> ftp ftp.gnu.org

Connected to ftp.gnu.org.

Name (ftp.gnu.org:dave): ftp

331 Please specify the password.

Password:

230 Login successful. Have fun.

Using binary mode to transfer files.

ftp> cd pub/gnu/readline

250 Directory successfully changed.

ftp> get readline-4.3.tar.gz

local: readline-4.3.tar.gz remote: readline-4.3.tar.gz
961662 bytes received in 00:06 (136.48 KB/s)
ftp> bye

221 Goodbye.

We then unpack the archive. This creates a source tree in a

subdirectory (which we know from experience will be called
readline-4.3). We make this our current working directory.

tmp> tar zxf readline-4.3.tar.gz

tmp> cd readline-4.3
We are now in a position to import this source into our repos-
itory. We'll store it in the repository under vendorsrc/fsf/
readline. (Remember, all our third-party code is stored un-
der vendorsrc/. In this case, the vendor is the Free Software
Foundation, and the “product” is readline.)

Prepared exclusively for xxyyxxzzxx



LIBRARIES WITH SOURCE CODE <« 124

tmp/readline-4.3> cvs import -ko -I! -m "load 4.3" \
vendorsrc/fsf/readline FSF_RL RL_4_3

import/aclocal.m4

import/ansi_stdlib.h

import/bind.c

import/callback.c

import/support/shobj-conf
import/support/wcwidth.c

zz zZzZz2z

No conflicts created by this import

That’s quite a command: we break it down in Figure 10.2 on

the next page. The -ko flag is important, but subtle. Nor- -ko =
mally, CVS will expand special keywords (such as $Author$) Keywords Off
in each of the files it manages. This lets you add annotations

to the files. (This isn’t a practice we encourage, so we haven’t

shown it so far in this book.) The problem is that the key-

words are expanded every time the file is checked out. If the

vendor also uses CVS, and if the vendor has used these tags,

then the source you receive will have the vendor’s information

in these fields. However, if you just import these files as they

stand and check them back out, CVS will update the tags, and
suddenly your name will appear in the author field. While this

may be vaguely satisfying, it will cause problems later when

you come to merge in changes with the next vendor release.

CVS will notice that these tag lines have changed, and you’ll

get conflicts when merging with the vendor’s code. Specify-

ing the -ko option turns off tag expansion for all files in the
import, so you won't see this problem.

The -I! is equally subtle; it tells CVS not to ignore any files -I! =

while importing. When you're working with your own directo- Ignore Nothing!
ries, you'll probably want CVS to bypass processing of backup

files and the like, but with vendor-supplied files, you're going

to want to load everything into the repository.

The vendor tag gives us a way to name the product we're im-
porting. In this case, all the code for readline can be refer-
enced using the tag FSF_RL. The release tag specifies the code
that makes up this particular release. If the FSF comes up
with version 4.4 of readline, we’ll check it in with a different
release tag. This means that we’ll always be able to get back
to the 4.3 release using the original RL_4_3 tag.

Having imported this code into the repository, we can delete
the temporary directory that we used.

Prepared exclusively for xxyyxxzzxx



LIBRARIES WITH SOURCE CODE

cvs import -ko -I! -m "load 4.3” vendorsrc/fsf/readline FSF_ RL RL_ 4.3

| L\

Tell CVS not Don’t ignore Comment Where to store Vendor tag for Tag associated
to expand any files while associated imported files  this software  with this
keywords in importing. with this in the release

the imported import. repository.

files.

Figure 10.2: A CVS “IMPORT” COMMAND

Importing New Vendor Releases

When a vendor releases a new version of their software, you
might want to incorporate it into your repository.> Assum-
ing that you haven’'t made any local changes to the vendor’s
source code, then this is easy; simply import it again, follow-
ing the same steps as above:

1. Download the new source, and unpack it in to a tempo-
rary directory.

2. Issue a CVS import command, using the same repository
location and vendor tag, but with an updated release tag.

For example, if the FSF released readline version 4.4, we could
do:

tmp> tar zxf readline-4.4.tar.gz

tmp> cd readline-4.4

tmp/readline-4.4> cvs import -m -ko -I! "load 4.4" \
vendorsrc/fsf/readline FSF_RL RI_4_4

import/aclocal.m4

import/ansi_stdlib.h

import/bind.c

import/callback.c

import/chardefs.h

import/compat.c

import/support/shobj-conf
import/support/wcwidth.c

zz zZzzZzzZz2z2=z

No conflicts created by this import

3Many teams make the mistake of constantly chasing the latest and great-
est vendor releases. This isn’'t always prudent. If the features added at a
particular release don’t enhance your application, is it worth the risk of in-
corporating new code? Sometimes skipping minor releases and only merging
major changes is a better idea.

Prepared exclusively for xxyyxxzzxx



MODIFYING THIRD-PARTY CODE < 126

10.2 Modifying Third-Party Code @

Sometimes the reason for importing third-party source code
is to allow your team to make changes. You may need to
add some application-specific functionality, or you might have
local bug fixes that you need to apply.

Clearly the ideal solution would be to supply this changed
code back to the third party and let them incorporate it into
their own copy. That way when they send you the next re-
lease, their code will incorporate your changes, and life will
be wonderful.

However, that isn’t always possible. In these cases, we need
to maintain our local changes and (ideally) have them auto-
matically roll forward from each vendor release to the next.

Fortunately for us, CVS makes this relatively easy. In the
background, the import mechanism is actually building and
managing a simple release tree. It works like this.

When you first import code into CVS, it creates a mainline,
and then immediately creates a branch (numbered 1.1.1). It
then places the code that you import into this branch (so
the first source files will have a revision number of 1.1.1.1).
Although this sounds complicated, it’s really no different to
the description we had of a simple release structure back on
page 18. And that isn’t a coincidence; behind the scenes CVS
is handing these imports as if you were the vendor performing
releases. The vendor tag that you give the import command
turns out to be the tag given to the release branch, and the
release tags given on each import identify the points on that
branch where each individual release’s code sits. This is il-
lustrated in Figure 10.3 on the next page.

If you check out vendor code, you'll be checking out of the
release branch (the branch labeled with the vendor tag). You
can verify this; doing a cvs status on a file will show a re-
vision number with four levels (so the first revision will be
1.1.1.1). However, there’s some magic here. If you edit ven-
dor code and check it back in, CVS will place your changes in
the mainline, but the revision number will be 1.2, not 1.1.1.2.
CVS reserves the code in the vendor branch for vendor code.

Prepared exclusively for xxyyxxzzxx



MODIFYING THIRD-PARTY CODE <« 127

RLA.3 RLAA

changes in
mainline

Figure 10.3: IMPORTED THIRD PARTY CODE. CODE IS IM-
PORTED IN TO A RELEASE BRANCH, LABELED BY THE VENDOR
TAG. EACH IMPORT GENERATES A NEW RELEASE TAG IN THAT
BRANCH. LOCAL WORK AUTOMATICALLY TAKES PLACE IN THE
MAINLINE.

What happens if you edit third-party code, and then a new
release comes along? Let’s find out. To do this, we’ll set up a
dummy repository. We'll then pretend to be a vendor (called
Acme) and create a couple of simple files. With our project
team hat back on, we’ll then import these, and check them
out into our workspace. We’ll then make a change and check
it in.

Back in the vendor directory we’ll prepare an updated release.
We'll then try to import it, and we’ll work out how to merge the
vendor changes with our own.

Because all this role playing can get confusing, once we get
started we’ll show the full path of the current directory at the
start of each of the sequences of commands. In the prompts
themselves, we’ll just show the directory name. In general,
when we're playing vendor we’ll be in the directory:

tmp/3rdparty/Acme

When we're a client dealing with checked-out vendor files we’ll
be in the directory:

tmp/3rdparty/work/vendorsrc/Acme

Prepared exclusively for xx



MODIFYING THIRD-PARTY CODE

Step 1: Set up the Repository

We'll do all our work in a directory called 3rdparty; this will
let us clean everything up at the end. The repository goes in
a subdirectory called repository.

# In directory tmp

tmp> mkdir 3rdparty

tmp> cd 3rdparty

tmp/3rdparty> export CVSROOT="/tmp/3rdparty/repository
tmp/3rdparty> cvs init

tmp/3rdparty> 1s # use ’dir’ under Windows
repository

Step 2: Create the Third-Party Code

We'll create a directory called Acme that contains the third-
party code. This directory will be the one we import into
CVS. We'll use an editor to create two files, Color.txt and
Number. txt using our favorite editor.

# in directory tmp/3rdparty

tmp/3rdparty> mkdir Acme
tmp/3rdparty> cd Acme

edit files, giving. ..

File Color. txt:
black
brown
red
orange
yellow
green

File Number. txt:
zZero
one
two
three
four

Prepared exclusively for xxyyxxzzxx



MODIFYING THIRD-PARTY CODE <« 129

Step 3: Import the Vendor Code

We've finished playing vendor for a minute. Now we’ll pretend
that we've received this code from the vendor and import it in
to the repository, storing it in vendorsrc/Acme.

# In directory tmp/3rdparty/Acme

Acme> cvs -ko import -m "load" vendorsrc/Acme Acme REL_1_0
N vendorsrc/Acme/Color.txt

N vendorsrc/Acme/Number. txt

No conflicts created by this import

Step 4: Set Up The Workspace

We’ll now create a workspace and check out this vendor code
there.

# In directory tmp/3rdparty/Acme

Acme> «cd ..

tmp/3rdparty> mkdir work

tmp/3rdparty> cd work

tmp/3rdparty/work> cvs co vendorsrc/Acme
cvs checkout: Updating vendorsrc/Acme

U vendorsrc/Acme/Color.txt

U vendorsrc/Acme/Number.txt

Step 5: Modify The Vendor Code

Part way through our project, we discover a problem in the
vendor code; their numbers file uses “zero,” but our project
standards call for “naught.” The vendor ignores our pleas for
a change, claiming we are their only customer to use Middle-
English numbering (can that be?). So we bite the bullet and
make the change ourselves. We edit the file in our workspace,
then check it back in.

# In directory tmp/3rdparty,/work

work> cd vendorsrc/Acme

Acme> # ... edit file

Acme> cvs commit -m "Zero becomes naught”

cvs commit: Examining

Checking in Number.txt;
.../repository/vendorsrc/Acme/Number.txt,v <-- Number.txt
new revision: 1.2; previous revision: 1.1

done

Prepared exclusively for xxyyxxzzxx



MODIFYING THIRD-PARTY CODE < 130

Step 6: The Vendor Makes a Change

Meanwhile, back at Acme Corp, they decide to produce V1.1
of the product. As part of the added value in this new release,
they’re adding three new numbers to their numbers file. We'll
simulate this by going back to our Acme directory (the one at
the top level) and editing the file.

# In directory tmp/3rdparty,/work/vendorsrc,/Acme
Acme> cd ../../../Acme
tmp/3rdparty/Acme> # ... edit file ...

After the edit, the new numbers file contains:

File Number. txt:

zero

one

two

three

four

five

six

seven
This file still has “zero” in it; remember that Acme did not
make the change to “naught.” That’s only in our local copy.

Step 7: Import the New Revision

Acme sends us the new revision, so with our client hats on we
import it into CVS.

# In directory tmp/3rdparty/Acme

Acme> cvs import -ko -I! -m "update" vendorsrc/Acme Acme REL_1_1
U vendorsrc/Acme/Color.txt

C vendorsrc/Acme/Number. txt

1 conflicts created by this import.
Use the following command to help the merge:

cvs checkout -jAcme:yesterday -jAcme vendorsrc/Acme

CVS was smart enough to recognize that this import was ac-
tually updating existing files. The Color.txt file updated
successfully (in fact it is unchanged) but the Number . txt file
has a potential conflict; it has been changed by us (as the
client) and also by the vendor. CVS was nice enough to sug-
gest the command we could use to fix the situation. Normally,
this command would work fine. Unfortunately it won’t work
for us. To see why, let’s look at the command in more detail.

Prepared exclusively for xxyyxxzzxx



MODIFYING THIRD-PARTY CODE <« 131

As we saw in Chapter 7.2, the -j option is used to merge in
changes during checkout or update. In this case we're using
two -j options. The first option, -jAcme:yesterday, tells
CVS to look at the Acme branch as it was yesterday, before (in
theory) we imported the latest release. The second, -jAcme
says look at it as it is now. The two together ask CVS to
compute the difference; this difference is the changes that the
vendor made. These changes are then applied to the current
head of our mainline. The net result of all this is that the
vendor’s changes are used to update our local copy.

Although this incantation would normally work (because few
vendors produce more than one release per day), it doesn’t
work too well in our example, as we didn’t even have any ven-
dor code yesterday. Instead, we’ll use an alternate form of the
-Jj option, which allows us to merge based on release tags.

To do this, change back to our workspace, and issue the fol-
lowing command.

# In directory tmp/3rdparty/Acme

Acme> cd ../work

work> cvs co -jREL_1_0 -jREL_1_1 vendorsrc/Acme

cvs checkout: Updating vendorsrc/Acme

RCS file: /Users/dave/tmp/3rdparty/repository/vendorsrc/Acme/Number.txt,v
retrieving revision 1.1.1.1

retrieving revision 1.1.1.2

Merging differences between 1.1.1.1 and 1.1.1.2 into Number.txt

Remember that we gave the first import the revision tag of
REL.1.0 and the second the tag REL.1_1. This lets us tell CVS
to apply the differences between these two releases to our cur-
rent mainline code. The result can be seen in the tracing that
follows the command: CVS merges the vendor’s changes in
to our local file. Let’s look at it and confirm that we have the
vendor’s three additional numbers, and that our “naught” has
not been changed.

# In directory tmp/3rdparty,/work

work> «cd vendorsrc/Acme
Acme> cvs status Number.txt

File: Number.txt Status: Locally Modified
Working revision: 1.2 Result of merge
Repository revision: 1.2 /Users/dave/tmp/3rdparty/repos. ..
Sticky Tag: (none)
Sticky Date: (none)
Sticky Options: (none)

We can also check the file contents.

Prepared exclusively for xxyyxxzzxx



MODIFYING THIRD-PARTY CODE < 132

File Number. txt:

naught

one

two

three

four

five

six

seven
Had there been conflicts between the vendor code and our
changes, we’'d have seen the normal conflict markers in the
file.

Step 8: Save the Merged File

Now that we've merged the changes (and run the tests to con-
firm the system still works) we can check everything back in
to the repository.

# In directory tmp/3rdparty,/work/vendorsrc,/Acme
Acme> cvs commit -m "Merged 1.1 changes"

cvs commit: Examining

Checking in Number.txt;

/Users/.../vendorsrc/Acme/Number.txt,v <-- Number.txt
new revision: 1.3; previous revision: 1.2
done

Prepared exclusively for xxyyxxzzxx



MODIFYING THIRD-PARTY CODE

Summary: Modifying Third-Party Code

Managing vendor releases using these simple steps is both
straightforward and powerful. CVS automatically maintains
a release branch that contains the unmodified code from the
vendor, tagged at each release. Our mainline in the repository
contains the same code, but with all our local changes. Using
the -j options allows us to merge the vendor’s changes at
each release into our local version of their code.

To summarize, the steps are:
e Import the vendor code:

cvs import -ko -I! -m "load" \
vendor.module vendor release.tag

e Check out vendor code into a local workspace:

cd work
cvs co vendor.-module

¢ Make local changes to vendor code and check back in:
cvs commit -m “summary of changes”

¢ If the vendor issues a new release, import it into the ven-
dor branch:

cvs import -ko -I! -m "update" \
vendor.module vendor release.tag

¢ Fix conflicts between vendor changes and our changes:
cvs co -jrelease.l -jrelease.? vendor-module
e Save the changes back:

cvs commit -m "“summary of changes”

Prepared exclusively for xxyyxxzzxx



