
Extracted from:

Programming Groovy
Dynamic Productivity for the Java Developer

This PDF file contains pages extracted from Programming Groovy, published by the

Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2008The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

Chapter 1

Introduction
As a busy Java developer, you’re constantly looking for ways to be more

productive, right? You’re probably willing to take all the help you can

get from the platform and tools available to you. When I wax poetic

about the “strength of Java,” I’m not talking about the language or its

syntax. It’s the Java platform that has become more capable and more

performant. To reap the benefit of the platform and to tackle the inher-

ent complexities of your applications, you need another tool—one with a

dynamic and metaprogramming capabilities. Java—the language—has

been flirting with that idea for a while and will support these features

to various degrees in future versions. However, you don’t have to wait

for that day. You can build performant Java applications with all the

dynamic capabilities today, right now, using Groovy.

1.1 Why Dynamic Languages?

Dynamic languages have the ability to extend a program at runtime,

including changing the structure of objects, types, and behavior. Dy-

namic languages allow you to do things at runtime that static languages

do at compile time; they allow you to execute program statements that

were created on the fly at runtime.

For example, if you want to get the date five days from now, you can

write this:

5.days.from.now

Yes, that’s your friendly java.lang.Integer chirping dynamic behavior in

Groovy, as you’ll learn later in this book.

WHY DYNAMIC LANGUAGES? 19

The flexibility offered by dynamic languages gives you the advantage

of evolving your application as it executes. You are probably familiar

with code generation and code generation tools. I consider code gener-

ation to be soooo 20th century. In fact, generated code is like an inces-

sant itch on your back; if you keep scratching it, it turns into a sore.

With dynamic languages, there are better ways. I prefer code synthe-

sis, which is in-memory code creation at runtime. Dynamic languages

make it easy to “synthesize code.” The code is synthesized based on the

flow of logic through your application and becomes active “just in time.”

By carefully applying these capabilities of dynamic languages, you can

be more productive as an application developer. This higher productiv-

ity means you can easily create higher levels of abstractions in shorter

amounts of time. You can also use a smaller, yet more capable, set

of developers to create applications. In addition, greater productivity

means you can create parts of your application quickly and get feed-

back from your fellow developers, testers, domain experts, and cus-

tomer representatives. And all this leads to greater agility.1

Dynamic languages have been around for a long time, so you may be

asking, why is now a great time to get excited about them? I can answer

that with four reasons:2

• Machine speed

• Availability

• Awareness of unit testing

• Killer applications

Let’s discuss each of these reasons for getting excited about dynamic

languages, starting with machine speed. Doing at runtime what other

languages do at compile time first raises the concern of the speed of

dynamic languages. Furthermore, interpreting code at runtime rather

than simply executing compiled code adds to that concern. Fortunately,

machine speed has consistently increased over the years—handhelds

have more computing and memory power today than what large com-

puters had decades ago. Tasks that were quite unimaginable using a

1. Tim O’Reilly observes the following about developing web applications: “Rather than

being finished paintings, they are sketches, continually being redrawn in response to

new data.” He also makes the point that dynamic languages are better suited for these in

“Why Scripting Languages Matter” (see Appendix A, on page 293).
2. A fifth reason is the ability to run dynamic languages on the JVM, but that came

much later.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/vslg

WHY DYNAMIC LANGUAGES? 20

1980s processor are easy to achieve today. The performance concerns

of dynamic languages are greatly eased because of processor speeds

and other improvements in our field, including better just-in-time com-

pilation techniques.

Now let’s talk about availability. The Internet and active “public” com-

munity-based development have made recent dynamic languages eas-

ily accessible and available. Developers can now easily download lan-

guages and tools and play with them. They can even participate in

community forums to influence the evolution of these languages.3 This

is leading to greater experimentation, learning, and adaptation of lan-

guages than in the past.

Now it’s time to talk about the awareness of unit testing. Most dynamic

languages are dynamically typed. The types are often inferred based

on the context. There are no compilers to flag type-casting violations

at compile time. Since quite a bit of code may be synthesized and your

program can be extended at runtime, you can’t simply rely upon coding-

time verification alone. Writing code in dynamic languages requires a

greater discipline from the testing point of view. Over the past few years,

we’ve seen greater awareness among programmers (though not suffi-

ciently greater adoption yet) in the area of testing in general and unit

testing in particular. Most of the programmers who have taken advan-

tage of these dynamic languages for commercial application develop-

ment have also embraced testing and unit testing.4

Finally, let’s discuss the fourth bullet point listed earlier. Many devel-

opers have in fact been using dynamic languages for decades. How-

ever, for the majority of the industry to be excited about them, we

had to have killer applications—those compelling stories to share with

your developers and managers. That tipping point, for Ruby in partic-

ular and for dynamic languages in general, came in the form of Rails

([TH05], [SH07], [Tat06]). Rails showed struggling web developers how

they could quickly develop applications using the dynamic capabilities

of Ruby. Along the same vein came Grails built using Groovy and Java,

Django built using Python, and Lift built using Scala, to mention a few.

3. The Groovy users mailing list is very active, with constant discussions from passion-

ate users expressing opinions, ideas, and criticisms on current and future features. Visit

http://groovy.codehaus.org/Mailing+Lists and http://groovy.markmail.org if you don’t believe me.
4. “Legacy code is simply code without tests.” —Michael C. Feathers [Fea04]

CLICK HERE to purchase this book now.

http://groovy.codehaus.org/Mailing+Lists
http://groovy.markmail.org
http://www.pragprog.com/titles/vslg

WHAT’S GROOVY? 21

These frameworks have caused enough stir in the development commu-

nity to make the industry-wide adoption of dynamic languages a highly

probable event in the near future.

I find that dynamic languages, along with metaprogramming capabil-

ities, make simple things simpler and harder things manageable. You

still have to deal with the inherent complexity of your application, but

dynamic languages let you focus your effort where it’s deserved. When I

got into Java (after years of C++), features such as reflection, a good set

of libraries, and evolving framework support made me productive. The

JVM, to a certain extent, provided me with the ability to take advan-

tage of metaprogramming. However, I had to use something in addition

to Java to tap into that potential—heavyweight tools such as AspectJ.

Like several other productive programmers, I found myself left with two

options. The first option was to use the exceedingly complex and not-

so-flexible Java along with heavyweight tools. The second option was

to move on to using dynamic languages such as Ruby that are object-

oriented and have metaprogramming capability built in (for instance, it

takes only a couple of lines of code to do AOP in Ruby and Groovy). A

few years ago, taking advantage of dynamic capabilities and metapro-

gramming and being productive at the same time meant leaving behind

the Java platform. (After all, you use these features to be productive

and can’t let them slow you down, right?) That is not the case any-

more. Languages such as Groovy and JRuby are dynamic and run on

the JVM. They allow you to take full advantage of both the rich Java

platform and dynamic language capabilities.

1.2 What’s Groovy?

Groovy5 is a lightweight, low-ceremony, dynamic, object-oriented lan-

guage that runs on the JVM. Groovy is open sourced under Apache

License, version 2.0. It derives strength from different languages such

as Smalltalk, Python, and Ruby while retaining a syntax familiar to

Java programmers. Groovy compiles into Java bytecode and extends

the Java API and libraries. It runs on Java 1.4 or newer. For deploy-

ment, all you need is a Groovy JAR in addition to your regular Java

stuff, and you’re all set.

5. Merriam-Webster defines Groovy as “marvelous, wonderful, excellent, hip, trendy.”

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/vslg

WHY GROOVY? 22

I like to define Groovy as “a language that has been reborn several

times.”6 James Strachan and Bob McWhirter started it in 2003, and it

was commissioned into Java Specification Request (JSR 241) in March

2004. Soon after, it was almost abandoned because of various difficul-

ties and issues. Guillaume Laforge and Jeremy Rayner decided to rekin-

dle the efforts and bring Groovy back to life. Their first effort was to fix

bugs and stabilize the language features. The uncertainty lingered on

for a while. I know a number of people (committers and users) who sim-

ply gave up on the language at one time. Finally, a group of smart and

enthusiastic developers joined force with Guillaume and Jeremy, and a

vibrant developer community emerged. JSR version 1 was announced

in August 2005.

Groovy version 1.0 release was announced on January 2, 2007. It was

encouraging to see that, well before it reached 1.0, Groovy was put

to use on commercial projects in a handful of organizations in the

United States and Europe. In fact, I’ve seen growing interest in Groovy

in conferences and user groups around the world. Several organiza-

tions and developers are beginning to use Groovy at various levels on

their projects, and I think the time is ripe for major Groovy adoption in

the industry. Groovy version 1.5 was released on December 7, 2007.

Grails ([Roc06], [Rud07]),7 built using Groovy and Java, is a dynamic

web development framework based on “coding by convention.” It allows

you to quickly build web applications on the JVM using Groovy, Spring,

Hibernate, and other Java frameworks.

1.3 Why Groovy?

As a Java programmer, you don’t have to switch completely to a differ-

ent language. Trust me, Groovy feels like the Java language you already

know with but with a few augmentations.

There are dozens of scripting languages8 that can run on the JVM, such

as Groovy, JRuby, BeanShell, Scheme, Jaskell, Jython, JavaScript, etc.

The list could go on and on. Your language choice should depend on a

number of criteria: your needs, your preferences, your background, the

projects you work with, your corporate technical environment, and so

6. See “A bit of Groovy history,” a blog by Guillaume Laforge at http://glaforge.free.fr/

weblog/index.php?itemid=99.
7. See Jason Rudolph’s “Getting Started with Grails” in Appendix A, on page 293.
8. https://scripting.dev.java.net

CLICK HERE to purchase this book now.

http://glaforge.free.fr/weblog/index.php?itemid=99
http://glaforge.free.fr/weblog/index.php?itemid=99
https://scripting.dev.java.net
http://www.pragprog.com/titles/vslg

WHY GROOVY? 23

on. In this section, I will discuss whether Groovy is the right language

for you.

As a programmer, I am shameless about languages. I can comfortably

program in about eight structured, object-oriented, and functional pro-

gramming languages and can come dangerously close to writing code

in a couple more. In any given year, I actively code in about two to three

languages at least. So, if one thing, I am pretty unbiased when it comes

to choosing a language—I will pick the one that works the best for a

given situation. I am ready to change to another language with the ease

of changing a shirt, if that is the right thing to do, that is.

Groovy is an attractive language for a number of reasons:

• It has a flat learning curve.

• It follows Java semantics.

• It bestows dynamic love.

• It extends the JDK.

I’ll now expand on these reasons. First, you can take almost any Java

code9 and run it as Groovy. The significant advantage of this is a flat

learning curve. You can start writing code in Groovy and, if you’re

stuck, simply switch gears and write the Java code you’re familiar with.

You can later refactor that code and make it groovier.

For example, Groovy understands the traditional for loop. So, you can

write this:

// Java Style

for(int i = 0; i < 10; i++)

{

//...

}

As you learn Groovy, you can change that to the following code or one

of the other flavors for looping in Groovy (don’t worry about the syntax

right now; after all, you’re just getting started, and very soon you’ll be

a pro at it):

10.times {

//...

}

9. See Section 3.8, Gotchas, on page 69 for known problem areas.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/vslg

WHY GROOVY? 24

Second, when programming in Groovy, you can expect almost every-

thing you expect in Java. Groovy classes extend the same good old

java.lang.Object—Groovy classes are Java classes. The OO paradigm

and Java semantics are preserved, so when you write expressions and

statements in Groovy, you already know what those mean to you as a

Java programmer.

Here’s a little example to show you that Groovy classes are Java classes:

Download Introduction/UseGroovyClass.groovy

println XmlParser.class

println XmlParser.class.superclass

If you run groovy UseGroovyClass, you’ll get the following output:

class groovy.util.XmlParser

class java.lang.Object

Now let’s talk about the third reason to love Groovy. Groovy is dynamic,

and it is optionally typed. If you’ve enjoyed the benefits of other dynamic

languages such as Smalltalk, Python, JavaScript, and Ruby, you can

realize those in Groovy. If you had looked at Groovy 1.0 support for

metaprogramming, it probably left you desiring for more. Groovy has

come a long way since 1.0, and Groovy 1.5 has pretty decent metapro-

gramming capabilities.

For instance, if you want to add the method isPalindrome() to String—a

method that tells whether a word spells the same forward and back-

ward—you can add that easily with only a couple lines of code (again,

don’t try to figure out all the details of how this works right now; you

have the rest of the book for that):

Download Introduction/Palindrome.groovy

String.metaClass.isPalindrome = {->

delegate == delegate.reverse()

}

word = 'tattarrattat'

println "$word is a palindrome? ${word.isPalindrome()}"

word = 'Groovy'

println "$word is a palindrome? ${word.isPalindrome()}"

The following output shows how the previous code works:

tattarrattat is a palindrome? true

Groovy is a palindrome? false

Finally, as a Java programmer, you rely heavily on the JDK and the API

to get your work done. These are still available in Groovy. In addition,

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/vslg/code/Introduction/UseGroovyClass.groovy
http://media.pragprog.com/titles/vslg/code/Introduction/Palindrome.groovy
http://www.pragprog.com/titles/vslg

WHAT’S IN THIS BOOK? 25

Groovy extends the JDK with convenience methods and closure support

through the GDK. Here’s a quick example of an extension in GDK to the

java.util.ArrayList class:

lst = ['Groovy', 'is', 'hip']

println lst.join(' ')

println lst.getClass()

The output from the previous code confirms that you’re still working

with the JDK but that you used the Groovy-added join() method to con-

catenate the elements in the ArrayList:

Groovy is hip

class java.util.ArrayList

You can see how Groovy takes the Java you know and augments it.

If your project team is familiar with Java, if they’re using it for most

of your organization’s projects, and if you have a lot of Java code to

integrate and work with, then you will find that Groovy is a nice path

toward productivity gains.

1.4 What’s in This Book?

This book is about programming using the Groovy language. I make no

assumptions about your knowledge of Groovy or dynamic languages,

although I do assume you are familiar with Java and the JDK. Through-

out this book, I will walk you through the concepts of the Groovy lan-

guage, presenting you with enough details and a number of examples

to illustrate the concepts. My objective is for you to get proficient with

Groovy by the time you put this book down, after reading a substantial

portion of it, of course.

The rest of this book is organized as follows:

The book has has three parts: “Beginning Groovy,” “Using Groovy,” and

“MOPping Groovy.”

In the chapters in Part 1, “Beginning Groovy,” I focus on the whys and

whats of Groovy—those fundamentals that’ll help you get comfortable

with general programming in Groovy. Since I assume you’re familiar

with Java, I don’t spend any time with programming basics, like what

an if statement is or how to write it. Instead, I take you directly to the

similarities of Groovy and Java and topics that are specific to Groovy.

In the chapters in Part 2, “Using Groovy,” I focus on how to use Groovy

for everyday coding—working with XML, accessing databases, and

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/vslg

WHAT’S IN THIS BOOK? 26

working with multiple Java/Groovy classes and scripts—so you can put

Groovy to use right away for your day-to-day tasks. I also discuss the

Groovy extensions and additions to the JDK so you can take advantage

of both the power of Groovy and the JDK at the same time.

In the chapters in Part 3, “MOPping Groovy,” I focus on the metapro-

gramming capabilities of Groovy. You’ll see Groovy really shine in these

chapters and learn how to take advantage of its dynamic nature. You’ll

start with the fundamentals of MetaObject Protocol (MOP), learn how to

do aspect-oriented programming (AOP) such as operations in Groovy,

and learn about dynamic method/property discovery and dispatching.

Then you’ll apply those right away to creating and using builders and

domain-specific languages (DSLs). Unit testing is not only necessary in

Groovy because of its dynamic nature, but it is also easier to do—you

can use Groovy to unit test your Java and Groovy code, as you’ll see in

this part of the book.

Here’s what’s in each chapter:

Part 1: “Beginning Groovy”

In Chapter 2, Getting Started, on page 32, you’ll download and install

Groovy and take it for a test-drive right away using groovysh and groovy-

Console. You’ll also learn how to run Groovy without these tools—from

the command line and within your IDEs.

In Chapter 3, Groovy for the Java Eyes, on page 39, you’ll start with

familiar Java code and refactor that to Groovy. After a quick tour of

Groovy features that improve your everyday Java coding, you’ll learn

about Groovy’s support for Java 5 features. Groovy follows Java seman-

tics, except in places it does not—you’ll also learn gotchas that’ll help

avoid surprises.

In Chapter 4, Dynamic Typing, on page 77, you’ll see how Groovy’s

typing is similar and different from Java’s typing, what Groovy really

does with the type information you provide, and when to take advan-

tage of dynamic typing vs. optional typing. You’ll also learn how to take

advantage of Groovy’s dynamic typing, design by capability, and multi-

methods.

In Chapter 5, Using Closures, on page 94, you’ll learn all about the

exciting Groovy feature called closures, including what they are, how

they work, and when and how to use them.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/vslg

WHAT’S IN THIS BOOK? 27

In Chapter 6, Working with Strings, on page 113, you’ll learn about

Groovy strings, working with multiline strings, and Groovy’s support

for regular expressions.

In Chapter 7, Working with Collections, on page 126, you’ll explore

Groovy’s support for Java collections—lists and maps. You’ll learn var-

ious convenience methods on collections, and after this chapter, you’ll

never again want to use your collections the old way.

Part 2: “Using Groovy”

Groovy embraces and extends the JDK. You’ll explore the GDK and

learn the extensions to Object and other Java classes in Chapter 8,

Exploring the GDK, on page 143.

Groovy has pretty good support for working with XML, including pars-

ing and creating XML documents, as you’ll see in Chapter 9, Working

with XML, on page 157.

Chapter 10, Working with Databases, on page 166 presents Groovy’s

SQL support, which will make your database-related programming easy

and fun. In this chapter, you’ll learn about iterators, datasets, and how

to perform regular database operations using simpler syntax and clo-

sures. I’ll also show how to get data from Microsoft Excel documents.

One of the key strengths of Groovy is the integration with Java. In

Chapter 11, Working with Scripts and Classes, on page 174, you’ll learn

ways to closely interact with multiple Groovy scripts, Groovy classes,

and Java classes from within your Groovy and Java code.

Part 3: “MOPping Groovy”

Metaprogramming is one of the biggest benefits of dynamic languages

and Groovy; it has the ability to inspect classes at runtime and dynam-

ically dispatch method calls. You’ll explore Groovy’s support for meta-

programming in Chapter 12, Exploring Meta-Object Protocol (MOP), on

page 186, beginning with the fundamentals of how Groovy handles

method calls to Groovy objects and Java objects.

Groovy allows you to perform AOP-like method interceptions using

GroovyInterceptable and ExpandoMetaClass, as you’ll see in Chapter 13,

Intercepting Methods Using MOP, on page 196.

In Chapter 14, MOP Method Injection and Synthesis, on page 204, you’ll

dive into Groovy metaprogramming capabilities that allow you to inject

and synthesize methods at runtime.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/vslg

WHO IS THIS BOOK FOR? 28

In Chapter 15, MOPping Up, on page 226, you will learn how to syn-

thesize classes dynamically, how to use metaprogramming to delegate

method calls, and how to choose between different metaprogramming

techniques you’ve learned in the previous three chapters.

Unit testing is not a luxury or a “if-we-have-time” practice in Groovy.

The dynamic nature of Groovy requires unit testing, and fortunately, at

the same time, it facilitates writing tests and creating mock objects, as

you’ll learn in Chapter 16, Unit Testing and Mocking, on page 236. You

will learn techniques that will help you use Groovy to unit test your

Java code and Groovy code.

Groovy builders are specialized classes that help you build internal

DSLs for a nested hierarchy. You can learn how to use them and to

create your own builders in Chapter 17, Groovy Builders, on page 262.

You can apply Groovy’s metaprogramming capabilities to build internal

DSLs using the techniques you’ll learn in Chapter 18, Creating DSLs

in Groovy, on page 279. You’ll start by learning about DSLs, including

their characteristics, and quickly jump in to build them in Groovy.

Finally, Appendix A, on page 293 and Appendix B, on page 298, gather

together all the references to web articles and books cited throughout

this book.

1.5 Who Is This Book For?

This book is for developers working on the Java platform. It is better

suited for programmers (and testers) who understand the Java lan-

guage fairly well. Other developers who understand programming in

other languages can use this book as well, but they should supplement

it with books that provide them with an in-depth understanding of Java

and the JDK.

Programmers who are somewhat familiar with Groovy can use this book

to learn some tips and tricks of the language that they may not other-

wise have the opportunity to explore. Finally, those already familiar

with Groovy may find this book useful for training or coaching fellow

developers in their organizations.

1.6 Acknowledgments

Writing a book is like writing a screenplay—a lot of things are added,

changed, and deleted from the original manuscript. What you’re hold-

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/vslg

ACKNOWLEDGMENTS 29

ing in your hand is a work I started, but a number of people helped get

it into its current form. If you find this book useful and interesting, it

was a result of a collective effort. Any mistakes you find are my own—I

take responsibility for those.

First, I thank Daniel Steinberg for editing this book. His command of

the subject, attention to the detail, patience, and real-time response10

were instrumental to the quality and record-time completion of this

book. I call his edits “immense quality at Internet speed.”

I thank Dave Thomas, Andy Hunt, Steve Peter, Kim Wimpsett, and the

rest of the Pragmatic team who worked behind the scenes to get this

book published. The Pragmatic Bookshelf’s writing process is agile, and

I can’t imagine writing a book any other way without the simple yet

effective tools, facilities, and practices they’ve created.

I had the privilege of a number of Groovy and Grails committers review-

ing this book. I thank Alexandru Popescu, Dierk Konig, Graeme Rocher,

Guillaume Laforge, Jason Rudolph, Jeff Brown, John Wilson, and Rus-

sel Winder for their valuable input, corrections, and clarifications. I

also thank the other Groovy committers and community for their help

through the Groovy users mailing list—for answering my questions,

explaining things I didn’t understand, and quickly fixing the bugs I

found.

I thank Brian Sletten, David Geary, Joe McTee, Nathaniel Schutta,

Scott Davis, Scott Leberknight, and Stuart Halloway for taking time

away from their extremely busy schedules to review this book and offer

their valuable input.

I also thank the developers who purchased this book in the beta form.

You started giving feedback within 24 hours of the release of the beta

book! Thank you Adam Rinehart, Alan Thompson, Frederic Jean, John

Loizeaux, Kevin Hutchinson, Richard Boreiko, Tim Hennekey, and Todd

W. Crone for your feedback, suggestions, and corrections.

I thank those wonderful developers who have endured my training, con-

ference presentations, and podcasts. The questions you asked, your

genuine interest, and your constructive feedback were very helpful—

you gave me confidence and encouraged me to continue writing.

10. I was surprised when I checked in a chapter around 6 a.m. on a Sunday and got

high-quality feedback from Dan within a couple of hours.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/vslg

ACKNOWLEDGMENTS 30

I thank Jay Zimmerman for giving me the opportunity to present a

number of these concepts at the No Fluff Just Stuff conferences (http://

www.nofluffjuststuff.com) around the world and for creating a community

of exceptional speakers and developers.

Special thanks to the NFJS opinionated geeks—excuse me, I mean my

friends and fellow speakers—who I meet several weekends each year for

their friendship, passion, opinions, and discussions on various topics.

Where else do you find guys who argue checked vs. unchecked excep-

tions for three hours in a London restaurant and then some back at the

hotel?

Writing this book would not even have been imaginable without my

wife’s encouragement, support, and sacrifice. She has been too gener-

ous to me over the past several years, especially when I disappeared

while writing this book. Thank you, Kavitha, for giving me the wings.

My sincere thanks to my sons, Karthik and Krupakar, for being so kind

and understanding—you guys are my inspiration.

CLICK HERE to purchase this book now.

http://www.nofluffjuststuff.com
http://www.nofluffjuststuff.com
http://www.pragprog.com/titles/vslg

Chapter 3

Groovy for the Java Eyes
I’ll help you ease into Groovy in this chapter. Specifically, we’ll start

on familiar ground and then transition into the Groovy way of writ-

ing. Since Groovy preserves Java syntax and semantics, you can mix

Java style and Groovy style at will. And, as you get comfortable with

Groovy, you can make your code even groovier. So, get ready for a tour

of Groovy. We’ll wrap this chapter with some “gotchas”—a few things

that might catch you off guard if you aren’t expecting them.

3.1 From Java to Groovy

Groovy readily accepts your Java code. So, start with the code you’re

familiar with, but run it through Groovy. As you work, figure out elegant

and Groovy ways to write your code. You’ll see that your code is doing

the same things, but it’s a lot smaller. It’ll feel like your refactoring is

on steroids.

Hello, Groovy

Here a Java sample that’s also Groovy code:

// Java code

public class Greetings

{

public static void main(String[] args)

{

for(int i = 0; i < 3; i++)

{

System.out.print("ho ");

}

System.out.println("Merry Groovy!");

}

}

FROM JAVA TO GROOVY 40

Default Imports

You don’t have to import some common classes/packages
when you write Groovy code. For example, Calendar read-
ily refers to java.util.Calendar. Groovy automatically imports
the following Java packages: java.lang, java.util, java.io,
and java.net. It also imports the classes java.math.BigDecimal

and java.math.BigInteger. In addition, the Groovy packages
groovy.lang and groovy.util are imported.

The output from the previous code is as follows:

ho ho ho Merry Groovy!

That’s a lot of code for such a simple task. Still, Groovy will obediently

accept and execute it. Simply save that code to a file named Greet-

ings.groovy, and execute it using the command groovy Greetings.

Groovy has a higher signal-to-noise ratio. Hence, less code, more result.

In fact, you can get rid of most of the code from the previous program

and still have it produce the same result. Start by removing the line-

terminating semicolons first. Losing the semicolons not only reduces

noise, but it also helps to use Groovy to implement internal DSLs

(Chapter 18, Creating DSLs in Groovy, on page 279).

Then remove the class and method definition. Groovy is still happy (or

is it happier?).

Download GroovyForJavaEyes/LightGreetings.groovy

for(int i = 0; i < 3; i++)

{

System.out.print("ho ")

}

System.out.println("Merry Groovy!")

You can go even further. Groovy understands println() because it has

been added on java.lang.Object. It also has a lighter form of the for loop

that uses the Range object, and Groovy is lenient with parentheses. So,

you can reduce the previous code to the following:

Download GroovyForJavaEyes/LighterGreetings.groovy

for(i in 0..2) { print 'ho ' }

println 'Merry Groovy!'

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/LightGreetings.groovy
http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/LighterGreetings.groovy
http://www.pragprog.com/titles/vslg

FROM JAVA TO GROOVY 41

The output from the previous code is the same as the Java code you

started with, but the code is a lot lighter. That just goes to show you

that simple things are simple to do in Groovy.

Ways to Loop

You’re not restricted to the traditional for loop in Groovy. You already

used the range 0..2 in the for loop. Wait, there’s more.1

Groovy has added a convenient upto() instance method to java.lang.

Integer, so you can loop using that method, as shown here:

Download GroovyForJavaEyes/WaysToLoop.groovy

0.upto(2) { print "$it "}

Here you called upto() on 0, which is an instance of Integer. The output

from the previous code is as follows:

0 1 2

So, what’s that it in the code block? In this context, it represents the

index value through the loop. The upto() method accepts a closure as a

parameter. If the closure expects only one parameter, you can use the

default name it for it in Groovy. Keep that in mind, and move on for

now; we’ll discuss closures in more detail in Chapter 5, Using Closures,

on page 94. The $ in front of the variable it tells the method println() to

print the value of the variable instead of the characters “it”—it allows

you to embed expressions within strings, as you’ll see in Chapter 6,

Working with Strings, on page 113.

The upto() method allows you to set both lower and upper limits. If you

start at 0, you can also use the times() method, as shown here:

Download GroovyForJavaEyes/WaysToLoop.groovy

3.times { print "$it "}

The output from previous code is as follows:

0 1 2

If you want to skip values while looping, use the step() method:

Download GroovyForJavaEyes/WaysToLoop.groovy

0.step(10, 2) { print "$it "}

The output from the previous code is as follows:

0 2 4 6 8

1. http://groovy.codehaus.org/Looping

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/WaysToLoop.groovy
http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/WaysToLoop.groovy
http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/WaysToLoop.groovy
http://groovy.codehaus.org/Looping
http://www.pragprog.com/titles/vslg

FROM JAVA TO GROOVY 42

You’ve now seen simple looping in action. You can also iterate or tra-

verse a collection of objects using similar methods, as you’ll see later in

Chapter 7, Working with Collections, on page 126.

To go further, you can rewrite the greetings example using the methods

you learned earlier. Look at how short the following Groovy code is

compared to the Java code you started with:

Download GroovyForJavaEyes/WaysToLoop.groovy

3.times { print 'ho ' }

println 'Merry Groovy!'

To confirm, the output from the previous code is as follows:

ho ho ho Merry Groovy!

A Quick Look at the GDK

Groovy extends the JDK with an extension called the GDK2 or the

Groovy JDK. I’ll whet your appetite here with a quick example.

In Java, you can use java.lang.Process to interact with a system-level

process. Suppose you want to invoke Subversion’s help from within

your code; well, here’s the Java code for that:

//Java code

import java.io.*;

public class ExecuteProcess

{

public static void main(String[] args)

{

try

{

Process proc = Runtime.getRuntime().exec("svn help");

BufferedReader result = new BufferedReader(

new InputStreamReader(proc.getInputStream()));

String line;

while((line = result.readLine()) != null)

{

System.out.println(line);

}

}

catch(IOException ex)

{

ex.printStackTrace();

}

}

}

2. http://groovy.codehaus.org/groovy-jdk.html

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/WaysToLoop.groovy
http://groovy.codehaus.org/groovy-jdk.html
http://www.pragprog.com/titles/vslg

FROM JAVA TO GROOVY 43

java.lang.Process is very helpful, but I had to jump through some hoops

to use it in the previous code; in fact, all the exception-handling code

and effort to get to the output makes me dizzy. But the GDK, on the

other hand, makes this insanely simple:

Download GroovyForJavaEyes/Execute.groovy

println "svn help".execute().text

Compare the two pieces of code. They remind me of the sword-fight

scene3 from the movie Raiders of the Lost Ark; the Java code is pulling

a major stunt like the villain with the sword. Groovy, on the other hand,

like Indy, effortlessly gets the job done. Don’t get me wrong—I am cer-

tainly not calling Java the villain. You’re still using Process and the JDK

in Groovy code. Your enemy is the unnecessary complexity that makes

it harder and time-consuming to utilize the power of the JDK and the

Java platform.

Which of the previous two versions would you prefer? The short and

sweet one-liner, of course (unless you’re a consultant who gets paid by

the number of lines of code you write...).

When you called the execute() method on the instance of String, Groovy

created an instance that extends java.lang.Process, just like the exec()

method of Runtime did in the Java code. You can verify this by using the

following code:

Download GroovyForJavaEyes/Execute.groovy

println "svn help".execute().getClass().name

The output from the previous code, when run on a Unix-like machine,

is as follows:

java.lang.UNIXProcess

On a Windows machine, you’ll get this:

java.lang.ProcessImpl

When you call text, you’re calling the Groovy-added method getText() on

the Process to read the process’s entire standard output into a String.4

Go ahead, try the previous code.

3. http://www.youtube.com/watch?v=m5TcfywPj0E

4. If you simply want to wait for a process to finish, use either waitFor() or the Groovy-

added method waitForOrKill() that takes a timeout in milliseconds.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/Execute.groovy
http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/Execute.groovy
http://www.youtube.com/watch?v=m5TcfywPj0E
http://www.pragprog.com/titles/vslg

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Programming Groovy’s Home Page

http://pragprog.com/titles/vslg

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/vslg.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragprog.com/catalog

Customer Service: orders@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

http://pragprog.com/titles/vslg
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/vslg
www.pragprog.com/catalog

	Contents
	Foreword
	Introduction
	Why Dynamic Languages?
	What's Groovy?
	Why Groovy?
	What's in This Book?
	Who Is This Book For?
	Acknowledgments

	Beginning Groovy
	Getting Started
	Getting Groovy
	Installing Groovy
	Test-Drive Using groovysh
	Using groovyConsole
	Running Groovy on the Command Line
	Using an IDE

	Groovy for the Java Eyes
	From Java to Groovy
	JavaBeans
	Optional Parameters
	Implementing Interfaces
	Groovy boolean Evaluation
	Operator Overloading
	Support of Java 5 Language Features
	Gotchas

	Dynamic Typing
	Typing in Java
	Dynamic Typing
	Dynamic Typing != Weak Typing
	Design by Capability
	Optional Typing
	Types in Groovy
	Multimethods
	Dynamic: To Be or Not to Be?

	Using Closures
	Closures
	Use of Closures
	Working with Closures
	Closure and Resource Cleanup
	Closures and Coroutines
	Curried Closure
	Dynamic Closures
	Closure Delegation
	Using Closures

	Working with Strings
	Literals and Expressions
	GString Lazy Evaluation Problem
	Multiline String
	String Convenience Methods
	Regular Expressions

	Working with Collections
	Using List
	Iterating Over an ArrayList
	Finder Methods
	Collections' Convenience Methods
	Using Map
	Iterating Over Map
	Map Convenience Methods

	Using Groovy
	Exploring the GDK
	Object Extensions
	Other Extensions

	Working with XML
	Parsing XML
	Creating XML

	Working with Databases
	Connecting to a Database
	Database Select
	Transforming Data to XML
	Using DataSet
	Inserting and Updating
	Accessing Microsoft Excel

	Working with Scripts and Classes
	The Melting Pot of Java and Groovy
	Running Groovy
	Using Groovy Classes from Groovy
	Using Groovy Classes from Java
	Using Java Classes from Groovy
	Using Groovy Scripts from Groovy
	Using Groovy Scripts from Java
	Ease of Integration

	MOPping Groovy
	Exploring Meta-Object Protocol (MOP)
	Groovy Object
	Querying Methods and Properties
	Dynamically Accessing Objects

	Intercepting Methods Using MOP
	Intercepting Methods Using GroovyInterceptable
	Intercepting Methods Using MetaClass

	MOP Method Injection and Synthesis
	Injecting Methods Using Categories
	Injecting Methods Using ExpandoMetaClass
	Injecting Methods into Specific Instances
	Method Synthesis Using methodMissing
	Method Synthesis Using ExpandoMetaClass
	Synthesizing Methods for Specific Instances

	MOPping Up
	Creating Dynamic Classes with Expando
	Method Delegation: Putting It All Together
	Review of MOP Techniques

	Unit Testing and Mocking
	Code in This Book and Automated Unit Tests
	Unit Testing Java and Groovy Code
	Testing for Exceptions
	Mocking
	Mocking by Overriding
	Mocking Using Categories
	Mocking Using ExpandoMetaClass
	Mocking Using Expando
	Mocking Using Map
	Mocking Using the Groovy Mock Library

	Groovy Builders
	Building XML
	Building Swing
	Custom Builder Using Metaprogramming
	Using BuilderSupport
	Using FactoryBuilderSupport

	Creating DSLs in Groovy
	Context
	Fluency
	Types of DSLs
	Designing Internal DSLs
	Groovy and DSLs
	Closures and DSLs
	Method Interception and DSLs
	The Parentheses Limitation and a Workaround
	Categories and DSLs
	ExpandoMetaClass and DSLs

	Web Resources
	Bibliography

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

