
Extracted from:

Programming Concurrency on
the JVM

Mastering Synchronization, STM, and Actors

This PDF file contains pages extracted from Programming Concurrency on the JVM,
published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com .

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printer versions; the

content is otherwise identical.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Programming Concurrency on
the JVM

Mastering Synchronization, STM, and Actors

Venkat Subramaniam

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Brian P. Hogan (editor)
Potomac Indexing, LLC (indexer)
Kim Wimpsett (copyeditor)
David Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2011 Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-934356-76-0
Printed on acid-free paper.
Book version: P1.0—August 2011

http://pragprog.com

To Mom and Dad, for teaching the values of
integrity, honesty, and diligence.

“If it hurts, stop doing it” is a doctor’s good advice. In concurrent program-
ming, shared mutability is “it.”

With the JDK threading API, it’s easy to create threads, but it soon becomes
a struggle to prevent them from colliding and messing up. The STM eases
that pain quite a bit; however, in languages like Java, we must still be very
careful to avoid unmanaged mutable variables and side effects. Surprisingly,
the struggles disappear when shared mutability disappears.

Letting multiple threads converge and collide on data is an approach we’ve
tried in vain. Fortunately, there’s a better way—event-based message passing.
In this approach, we treat tasks as lightweight processes, internal to the
application/JVM. Instead of letting them grab the data, we pass immutable
messages to them. Once these asynchronous tasks complete, they pass
back or pass on their immutable results to other coordinating task(s). We
design applications with coordinating actors1 that asynchronously exchange
immutable messages.

This approach has been around for a few decades but is relatively new in
the JVM arena. The actor-based model is quite successful and popular in
Erlang (see Programming Erlang: Software for a Concurrent World [Arm07]
and Concurrent Programming in Erlang [VWWA96]). Erlang’s actor-based
model was adopted and brought into the fold of the JVM when Scala was
introduced in 2003 (see Programming in Scala [OSV08] and Programming
Scala [Sub09]).

In Java, we get to choose from more than half a dozen libraries2 that provide
actor-based concurrency: ActorFoundary, Actorom, Actors Guild, Akka,
FunctionalJava, Kilim, Jetlang, and so on. Some of these libraries use aspect-
oriented bytecode weaving. Each of them is at a different level of maturity
and adoption.

In this chapter, we’ll learn how to program actor-based concurrency. For
the most part, we’ll use Akka as a vehicle to drive home the concepts. Akka
is a high-performing Scala-based solution that exposes fairly good Java API.
We can use it for both actor-based concurrency and for STM (see Chapter
6, Introduction to Software Transactional Memory, on page ?).

1. Someone asked me what these actors have to do with actors in use cases—nothing.
These actors act upon messages they receive, perform their dedicated tasks, and
pass response messages for other actors…to act upon in turn.

2. Imagine how boring it would be if we had just one good solution to pick.

• CLICK HERE to purchase this book now. discuss

http://pragprog.com/titles/vspcon
http://forums.pragprog.com/forums/vspcon

8.1 Isolating Mutability Using Actors

Java turned OOP into mutability-driven development,3 while functional
programming emphasizes immutability; both extremes are problematic. If
everything is mutable, we have to tackle visibility and race conditions. In a
realistic application, everything can’t be immutable. Even pure functional
languages provide restricted areas of code that allow side effects and ways
to sequence them. Whichever programming model we favor, it’s clear we
must avoid shared mutability.

Shared mutability—the root of concurrency problems—is where multiple
threads can modify a variable. Isolated mutability—a nice compromise that
removes most concurrency concerns—is where only one thread (or actor)
can access a mutable variable, ever.

In OOP, we encapsulate so only the instance methods can manipulate the
state of an object. However, different threads may call these methods, and
that leads to concurrency concerns. In the actor-based programming model,
we allow only one actor to manipulate the state of an object. While the ap-
plication is multithreaded, the actors themselves are single-threaded, and
so there are no visibility and race condition concerns. Actors request opera-
tions to be performed, but they don’t reach over the mutable state managed
by other actors.

We take a different design approach when programming with actors com-
pared to programming merely with objects. We divide the problem into
asynchronous computational tasks and assign them to different actors.
Each actor’s focus is on performing its designated task. We confine any
mutable state to within at most one actor, period (see Figure 11, Actors
isolate mutable state and communicate by passing immutable messages., on
page 7). We also ensure that the messages we pass between actors are to-
tally immutable.

In this design approach, we let each actor work on part of the problem. They
receive the necessary data as immutable objects. Once they complete their
assigned task, they send the results, as immutable objects, to the calling
actor or another designated post-processing actor. We can think of this as
taking OOP to the next level where select objects—mutable and active—run
in their own threads. The only way we’re allowed to manipulate these objects
is by sending messages to them and not by directly calling methods.

3. Java had other partners in this crime, so it doesn’t deserve all the blame.

6 •

• CLICK HERE to purchase this book now. discuss

http://pragprog.com/titles/vspcon
http://forums.pragprog.com/forums/vspcon

Figure 11—Actors isolate mutable state and communicate by passing immutable
messages.

8.2 Actor Qualities

An actor is a free-running activity that can receive messages, process re-
quests, and send responses. Actors are designed to support asynchrony
and efficient messaging.

Each actor has a built-in message queue much like the message queue be-
hind a cell phone. Both Sally and Sean may leave a message at the same
time on Bob’s cell phone. The cell phone provider saves both their messages
for Bob to retrieve at his convenience. Similarly, the actor library allows
multiple actors to send messages concurrently. The senders are nonblocking
by default; they send off a message and proceed to take care of their busi-
ness. The library lets the designated actor sequentially pick its messages to
process. Once an actor processes a message or delegates to another actor
for concurrent processing, it’s ready to receive the next message.

The life cycle of an actor is shown in Figure 12, Life cycle of an actor, on
page 9. Upon creation, an actor may be started or stopped. Once started,

• CLICK HERE to purchase this book now. discuss

Actor Qualities • 7

http://pragprog.com/titles/vspcon
http://forums.pragprog.com/forums/vspcon

it prepares to receive messages. In the active states, the actor is either pro-
cessing a message or waiting for a new message to arrive. Once it’s stopped,
it no longer receives any messages. How much time an actor spends waiting
vs. processing a message depends on the dynamic nature of the application
they’re part of.

If actors play a major role in our design, we’d expect many of them to float
around during the execution of the application. However, threads are limited
resources, and so tying actors to their threads will be very limiting. To avoid
that, actor libraries in general decouple actors from threads. Threads are
to actors as cafeteria seats are to office employees. Bob doesn’t have a des-
ignated seat at his company cafeteria (he needs to find another job if he
does), and each time he goes for a meal, he gets seated in one of the available
seats. When an actor has a message to process or a task to run, it’s provided
an available thread to run. Good actors don’t hold threads when they’re not
running a task. This allows for a greater number of actors to be active in
different states and provides for efficient use of limited available threads.
Although multiple actors may be active at any time, only one thread is active
in an actor at any instance. This provides concurrency among actors while
eliminating contention within each actor.

8.3 Creating Actors

We have quite a few choices of actor libraries to pick from, as I mentioned
earlier. In this book, we use Akka, a Scala-based library4 with pretty good
performance and scalability and with support for both actors and STM. We
can use it from multiple languages on the JVM. In this chapter, we’ll stick
to Java and Scala. In the next chapter, we’ll take a look at using Akka actors
with other languages.

Akka was written in Scala, so it’s quite simple and more natural to create
and use actors from Scala. Scala conciseness and idioms shine in the Akka
API. At the same time, they’ve done quite a wonderful job of exposing a tra-
ditional Java API so we can easily create and use actors in Java code. We’ll
first take a look at using it in Java and then see how that experience simpli-
fies and changes when we use it in Scala.

Creating Actors in Java

Akka’s abstract class akka.actor.UntypedActor represents an actor. Simply extend
this and implement the required onReceive() method—this method is called

4. In addition to Akka, there are at least two more Scala-based libraries—Scala actors
library and the Lift actors.

8 •

• CLICK HERE to purchase this book now. discuss

http://pragprog.com/titles/vspcon
http://forums.pragprog.com/forums/vspcon

Figure 12—Life cycle of an actor

whenever a message arrives for the actor. Let’s give it a shot. We’ll create
an actor...how about a HollywoodActor that’ll respond to requests to play differ-
ent roles?

Download favoringIsolatedMutability/java/create/HollywoodActor.java
public class HollywoodActor extends UntypedActor {

public void onReceive(final Object role) {
System.out.println("Playing " + role +
" from Thread " + Thread.currentThread().getName());

}
}

The onReceive() method takes an Object as a parameter. In this example, we’re
simply printing it out along with the details of the thread that’s processing
the message. We’ll learn how to deal with different types of messages later.

Our actor is all set and waiting for us to say “action.” We need to create an
instance of the actor and send messages with their role, so let’s get to that:

Download favoringIsolatedMutability/java/create/UseHollywoodActor.java
public class UseHollywoodActor {

public static void main(final String[] args) throws InterruptedException {
final ActorRef johnnyDepp = Actors.actorOf(HollywoodActor.class).start();
johnnyDepp.sendOneWay("Jack Sparrow");
Thread.sleep(100);
johnnyDepp.sendOneWay("Edward Scissorhands");
Thread.sleep(100);
johnnyDepp.sendOneWay("Willy Wonka");

• CLICK HERE to purchase this book now. discuss

Creating Actors • 9

http://media.pragprog.com/titles/vspcon/code/favoringIsolatedMutability/java/create/HollywoodActor.java
http://media.pragprog.com/titles/vspcon/code/favoringIsolatedMutability/java/create/UseHollywoodActor.java
http://pragprog.com/titles/vspcon
http://forums.pragprog.com/forums/vspcon

Actors.registry().shutdownAll();
}

}

In Java we’d generally create objects using new, but Akka actors are not
simple objects—they’re active objects. So, we create them using a special
method actorOf(). Alternately, we could create an instance using new and wrap
it around a call to actorOf() to get an actor reference, but let’s get to that later.
As soon as we create the actor, we start it by calling the start() method. When
we start an actor, Akka puts it into a registry; the actor is accessible through
the registry until the actor is stopped. In the example, now johnnyDepp, of
type ActorRef, is a reference to our actor instance.

Next we send a few messages to the actor with roles to play using the
sendOneWay() method. Once a message is sent, we really don’t have to wait.
However, in this case, the delay will help us learn one more detail, which is
how actors switch threads, as we’ll see soon. In the end, we ask to close
down all running actors. Instead of calling the shutdownAll() method, we may
call the stop() method on individual actors or send them a kill message as
well.

All right, to run the example, let’s compile the code using javac and remember
to specify the classpath to Akka library files. We can simply run the program
as we would run regular Java programs. Again, we must remember to provide
the necessary JARs in the classpath. Here’s the command I used on my
system:

javac -d . -classpath $AKKA_JARS HollywoodActor.java UseHollywoodActor.java
java -classpath $AKKA_JARS com.agiledeveloper.pcj.UseHollywoodActor

where AKKA_JARS is defined as follows:

export AKKA_JARS="$AKKA_HOME/lib/scala-library.jar:\
$AKKA_HOME/lib/akka/akka-stm-1.1.3.jar:\
$AKKA_HOME/lib/akka/akka-actor-1.1.3.jar:\
$AKKA_HOME/lib/akka/multiverse-alpha-0.6.2.jar:\
$AKKA_HOME/lib/akka/akka-typed-actor-1.1.3.jar:\
$AKKA_HOME/lib/akka/aspectwerkz-2.2.3.jar:\
$AKKA_HOME/config:\
."

We need to define the AKKA_JARS environment variable appropriately for our
operating system to match the location where we have Scala and Akka in-
stalled. We may use the scala-library.jar file that comes with Akka, or we may
use it from the local Scala installation.

10 •

• CLICK HERE to purchase this book now. discuss

http://pragprog.com/titles/vspcon
http://forums.pragprog.com/forums/vspcon

By default Akka prints extra log messages on the standard output; we saw
how to configure that in Creating Transactions in Java, on page ?.

Let’s compile and run the code to watch our actor responding to messages:

Playing Jack Sparrow from Thread akka:event-driven:dispatcher:global-1
Playing Edward Scissorhands from Thread akka:event-driven:dispatcher:global-2
Playing Willy Wonka from Thread akka:event-driven:dispatcher:global-3

The actor responds to the messages one at a time. The output also lets us
peek at the thread that’s running the actor, and it’s not the same thread
each time. It’s possible that the same thread handles multiple messages,
or it could be different like in this sample output—but in any case only one
message will be handled at any time. The key point is that the actors are
single-threaded but don’t hold their threads hostage. They gracefully release
their threads when they wait for a message; the delay we added helped in-
troduce this wait and illustrate this point.

The actor we created did not take any parameters at construction time. If
we desire, we can send parameters during actor creation. For example, to
initialize the actor with the Hollywood actor’s name:

Download favoringIsolatedMutability/java/params/HollywoodActor.java
public class HollywoodActor extends UntypedActor {

private final String name;
public HollywoodActor(final String theName) { name = theName; }

public void onReceive(final Object role) {
if(role instanceof String)
System.out.println(String.format("%s playing %s", name, role));

else
System.out.println(name + " plays no " + role);

}
}

The new version of the class HollywoodActor takes a value name of type String as
the constructor parameter. While we’re at it, let’s take care of handling the
unrecognized incoming message format. In this example, we simply print a
message saying the Hollywood actor does not play that unrecognized mes-
sage. We can take other actions such as returning an error code, logging,
calling the user’s mom to report, and so on. Let’s see how we can pass the
actual argument for this constructor parameter:

Download favoringIsolatedMutability/java/params/UseHollywoodActor.java
public class UseHollywoodActor {

public static void main(final String[] args) throws InterruptedException {

final ActorRef tomHanks = Actors.actorOf(new UntypedActorFactory() {

• CLICK HERE to purchase this book now. discuss

Creating Actors • 11

http://media.pragprog.com/titles/vspcon/code/favoringIsolatedMutability/java/params/HollywoodActor.java
http://media.pragprog.com/titles/vspcon/code/favoringIsolatedMutability/java/params/UseHollywoodActor.java
http://pragprog.com/titles/vspcon
http://forums.pragprog.com/forums/vspcon

public UntypedActor create() { return new HollywoodActor("Hanks"); }
}).start();

tomHanks.sendOneWay("James Lovell");
tomHanks.sendOneWay(new StringBuilder("Politics"));
tomHanks.sendOneWay("Forrest Gump");
Thread.sleep(1000);
tomHanks.stop();

}
}

We communicate with actors by sending messages and not by invoking
methods directly. Akka wants to make it hard to get a direct reference to
actors and wants us to get only a reference to ActorRef. This allows Akka to
ensure that we don’t add methods to actors and interact with them directly,
because that would take us back to the evil land of shared mutability that
we’re trying so hard to avoid. This controlled creation of actors also allows
Akka to garbage collect the actors appropriately. So, if we try to create an
instance of an actor class directly, we’ll get the runtime exception akka.actor.Ac-
torInitializationException with the message “You can not create an instance of an
actor explicitly using ‘new’.”

Akka allows us to create an instance in a controlled fashion, within a create()
method. So, let’s implement this method in an anonymous class that imple-
ments the UntypedActorFactory interface and within this method create our actor
instance, sending the appropriate construction-time parameters. The sub-
sequent call to actorOf() turns the regular object that extends from UntypedActor
into an Akka actor. We can then pass messages to this actor like before.

Our HollywoodActor only accepts messages of type String, but in the example,
we’re sending an instance of StringBuilder with the value Politics. The runtime
type checking we performed in the onReceive() takes care of this. Finally, we
stop the actor by calling the stop() method. The delay introduced gives time
for the actor to respond to messages before we shut it down. Let’s take it
for a ride to see the output:

Hanks playing James Lovell
Hanks plays no Politics
Hanks playing Forrest Gump

12 •

• CLICK HERE to purchase this book now. discuss

http://pragprog.com/titles/vspcon
http://forums.pragprog.com/forums/vspcon

