
Extracted from:

Programming Scala
Tackle Multi-Core Complexity on the JVM

This PDF file contains pages extracted from Programming Scala, published by the

Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2009 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2008 Venkat Subramaniam.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-31-X

ISBN-13: 978-1-934356-31-9

Printed on acid-free paper.

P1.0 printing, June 2009

Version: 2009-7-7

http://www.pragprog.com

Chapter 5

Sensible Typing
Static typing, or compile-time type checking, helps you define and verify

interface contracts at compile time. Scala, unlike some of the other

statically typed languages, does not expect you to provide redundant

type information. You don’t have to specify a type in most cases, and

you certainly don’t have to repeat it. At the same time, Scala will infer

the type and verify proper usage of references at compile time. Let’s

explore this with an example:

Download SensibleTyping/Typing.scala

var year: Int = 2009

var anotherYear = 2009

var greet = "Hello there"

var builder = new StringBuilder("hello")

println(builder.getClass())

Here we defined a variable year explicitly as type Int. We also defined

anotherYear as a variable but let Scala infer the type as Int based on

what we assigned to that variable. Similarly, we let Scala infer the type

of greet as String and builder as StringBuilder. We can query the reference

builder to find what type it’s referring to. If you attempt to assign some

other type of value or instance to any of these variables, you’ll get a

compilation error. Scala’s type inference is low ceremony1 and has no

learning curve; you simply have to undo some Java practices.

Scala’s static typing helps you in two ways. First, the compile-time type

checking can give you confidence that the compiled code meets certain

1. See “Essence vs. Ceremony” in Appendix A, on page 213.

http://media.pragprog.com/titles/vsscala/code/SensibleTyping/Typing.scala

COLLECTIONS AND TYPE INFERENCE 66

expectations.2 Second, it helps you to express the expectations on your

API in a compiler-verifiable format.

In this chapter, you’ll learn about Scala’s sensible static typing and type

inference. You’ll also look at three special types in Scala: Any, Nothing,

and Option.

5.1 Collections and Type Inference

Scala will provide type inference and type safety for the Java Generics

collections as well. The following is an example that uses an ArrayList.

The first declaration uses explicit, but redundant, typing. The second

declaration takes advantage of type inference.

As an aside, note that the underscore in the import statement is equiva-

lent to the asterisks in Java. So when we type java.util._, we are import-

ing all classes in the java.util package. If the underscore follows a class

name instead of a package name, we are importing all members of the

class—the equivalent of Java static import:

Download SensibleTyping/Generics.scala

import java.util._

var list1 : List[Int] = new ArrayList[Int]

var list2 = new ArrayList[Int]

list2 add 1

list2 add 2

var total = 0

for (val index <- 0 until list2.size()) {

total += list2.get(index)

}

println("Total is " + total)

Here’s the output:

Total is 3

2. As you’ll see, this is not a substitute for good unit testing, but you can use the good

compiler support as a first level of defense.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/vsscala/code/SensibleTyping/Generics.scala
http://www.pragprog.com/titles/vsscala

COLLECTIONS AND TYPE INFERENCE 67

Scala is vigilant about the type of the object you instantiate. It prohibits

conversions that may cause typing issues.3 Here’s an example of how

Scala differs from Java when it comes to handling Generics:

Download SensibleTyping/Generics2.scala

import java.util._

var list1 = new ArrayList[Int]

var list2 = new ArrayList

list2 = list1 // Compilation Error

We created a reference, list1, that points to an instance of ArrayList[Int].

Then we created another reference, list2, that points to an instance of

ArrayList with an unspecified parametric type. Behind the scenes, Scala

actually created an instance of ArrayList[Nothing]. When we try to assign

the first reference to the second, Scala gives us this compilation error.4

(fragment of Generics2.scala):6: error: type mismatch;

found : java.util.ArrayList[Int]

required: java.util.ArrayList[Nothing]

list2 = list1 // Compilation Error

^

one error found

!!!

discarding <script preamble>

Nothing is a subclass of all classes in Scala. By treating the new ArrayList

as an instance of ArrayList[Nothing], Scala rules out any possibility of

adding an instance of any meaningful type to this collection. This is

because you can’t treat an instance of base as an instance of derived

and Nothing is the bottom-most subclass.

So, how can you create a new ArrayList without specifying the type? One

way is to use the type Any. You saw how Scala deals with an assign-

ment when one collection holds objects of type Nothing, while the other

does not. Scala, by default, insists the collection types on either side

of assignment are the same (you’ll see later in Section 5.7, Variance of

Parameterized Type, on page 73 how you can alter this default behavior

in Scala).

3. Of course, Scala has no control over conversions that happen in compiled Java or

other language code that you call.

4. Equivalent Java code will compile with no errors but result in a runtime ClassCastEx-

ception.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/vsscala/code/SensibleTyping/Generics2.scala
http://www.pragprog.com/titles/vsscala

THE ANY TYPE 68

Here is an example using a collection of objects of type Any—Any is the

base type of all types in Scala:

Download SensibleTyping/Generics3.scala

import java.util._

var list1 = new ArrayList[Int]

var list2 = new ArrayList[Any]

var ref1 : Int = 1

var ref2 : Any = null

ref2 = ref1 //OK

list2 = list1 // Compilation Error

This time list1 refers to an ArrayList[Int], while list2 refers to an ArrayList[Any].

We also created two other references, ref1 of type Int and ref2 of type

Any. Scala has no qualms about letting us assign ref1 to ref2. So, it

is equivalent to assigning an Integer reference to a reference of type

Object. However, Scala doesn’t allow, by default, assigning a collection

of arbitrary type instances to a reference of a collection of Any instances

(later we’ll discuss covariance, which provides exceptions to this rule).

You saw how Java Generics enjoy enhanced type safety in Scala.

You don’t have to specify the type in order to benefit from Scala type

checking. You can just rely on the type inference where it makes sense.

The inference happens at compile time. So, you can be certain that the

type checking takes effect right then when you compile the code.

Scala insists that a nonparameterized collection be a collection of Noth-

ing and restricts assignment between types. These combine to enhance

type safety at compile time—providing for a sensible, low-ceremony

static typing.

In the previous examples, we used the Java collections. Scala also pro-

vides a wealth of collections, as you’ll see in Chapter 8, Using Collec-

tions, on page 105.

5.2 The Any Type

Scala’s Any type is a superclass of all types in Scala, graphically illus-

trated in the following diagram.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/vsscala/code/SensibleTyping/Generics3.scala
http://www.pragprog.com/titles/vsscala

MORE ABOUT NOTHING 69

Any

AnyRef AnyVal

...

Nothing

Any allows you to hold a common reference to objects of any type in

Scala. Any is an abstract class with the following methods: !=(), ==(),

asInstanceOf(), equals(), hashCode(), isInstanceOf(), and toString().

The direct descendants of Any are AnyVal and AnyRef. AnyVal serves as

a base for all types in Scala that map over to the primitive types in

Java—for example, Int, Double, and so on. On the other hand, AnyRef

is the base for all reference types. Although AnyVal does not have any

additional methods, AnyRef contains the methods of Java’s Object such

as notify(), wait(), and finalize().

AnyRef directly maps to the Java Object, so you can pretty much use

it in Scala like you’d use Object in Java. On the other hand, you can’t

call all the methods of Object on a reference of Any or AnyVal, even

though internally Scala treats them as Object references when compiled

to bytecode. In other words, while AnyRef directly maps to Object, Any

and AnyVal are type erased to Object much like type erasure of Generics

parameterized types in Java.

5.3 More About Nothing

You can see why you’d need Any, but what is the purpose of Nothing?

Scala’s type inference works hard to determine the type of expressions

and functions. If the type inferred is too broad, it will not help type

verification. At the same time, how do you infer the type of an expres-

sion or function if one branch returns, say, an Int and another branch

throws an exception? In this case, it is more useful to infer the type as

Int rather than a general Any. This means that the branch that throws

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/vsscala

OPTION TYPE 70

the exception must be inferred to return an Int or a subtype of Int for it

to be compatible. However, an exception may occur at any place, so not

all those expressions can be inferred as Int. Scala helps type inference

work smoothly with the type Nothing, which is a subtype of all types.

Since it is a subtype of all types, it is substitutable for anything. Noth-

ing is abstract, so you would not have a real instance of it anywhere at

runtime. It is purely a helper for type inference purposes.

Let’s explore this further with an example. Let’s take a look at a method

that throws an exception and see how Scala infers the type:

def madMethod() = { throw new IllegalArgumentException() }

println(getClass().getDeclaredMethod("madMethod", null).

getReturnType().getName())

The method madMethod() simply throws an exception. Using reflection,

we’re querying the return type of this method with this result:5

scala.runtime.Nothing$

Scala infers the return type of an expression that throws an exception

as Nothing. Scala’s Nothing is actually quite something—it is a subtype

of every other type. So, Nothing is substitutable for anything in Scala.

5.4 Option Type

Scala goes a step further in specifying nonexistence. When you per-

form pattern matching, for example, the result of the match may be

an object, a list, a tuple, and so on, or it may be nonexistent. Return-

ing a null quietly is problematic in two ways. First, the intent that you

actually expect nonexistence of a result is not expressed explicitly. Sec-

ond, there is no way to force the caller of your function to check for

nonexistence (null). Scala wants you to clearly specify your intent that

sometimes you do actually expect to give no result. Scala achieves this

in a type-safe manner using the Option[T] type. Let’s look at an example:

Download SensibleTyping/OptionExample.scala

def commentOnPractice(input: String) = {

//rather than returning null

if (input == "test") Some("good") else None

}

5. The $ symbol indicates an internal representation in Scala.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/vsscala/code/SensibleTyping/OptionExample.scala
http://www.pragprog.com/titles/vsscala

METHOD RETURN TYPE INFERENCE 71

for (input <- Set("test", "hack")) {

val comment = commentOnPractice(input)

println("input " + input + " comment " +

comment.getOrElse("Found no comments"))

}

Here, commentOnPractice() may return a comment (String) or may not

have any comments at all. This is represented as instances of Some[T]

and None, respectively. These two classes extend from the Option[T]

class. The output from the previous code is as follows:

input test comment good

input hack comment Found no comments

By making the type explicit as Option[String], Scala forces us to check

for the nonexistence of an instance. You’re less likely to get NullPointerEx-

ception because of unchecked null references. By calling the getOrElse()

method on the returned Option[T], you can proactively indicate what to

do in case the result is nonexistent (None).

5.5 Method Return Type Inference

In addition to inferring the types of variables, Scala also tries to infer

the return type of methods. However, there is a catch. It depends on

how you define your method. If you define your method with an equals

sign (=), then Scala infers the return type. Otherwise, it assumes the

method is a void method. Let’s look at an example:

Download SensibleTyping/Methods.scala

def printMethodInfo(methodName: String) {

println("The return type of " + methodName + " is " +

getClass().getDeclaredMethod(methodName, null).getReturnType().getName())

}

def method1() { 6 }

def method2() = { 6 }

def method3() = 6

def method4 : Double = 6

printMethodInfo("method1")

printMethodInfo("method2")

printMethodInfo("method3")

printMethodInfo("method4")

We’ve defined method1() like we normally define methods, by providing

a method name, a parameter list within parentheses, and the method

body within curly braces. Unfortunately, the way we’re used to is not

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/vsscala/code/SensibleTyping/Methods.scala
http://www.pragprog.com/titles/vsscala

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style, and continue to garner awards

and rave reviews. As development gets more and more difficult, the Pragmatic Program-

mers will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Programming Scala’s Home Page

http://pragprog.com/titles/vsscala

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/vsscala.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragprog.com/catalog

Customer Service: orders@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

http://pragprog.com/titles/vsscala
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/vsscala
www.pragprog.com/catalog

