
Extracted from:

Programming Scala
Tackle Multi-Core Complexity on the JVM

This PDF file contains pages extracted from Programming Scala, published by the

Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2009 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2008 Venkat Subramaniam.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-31-X

ISBN-13: 978-1-934356-31-9

Printed on acid-free paper.

P1.0 printing, June 2009

Version: 2009-7-7

http://www.pragprog.com

Chapter 3

Getting Up to Speed in Scala
Scala lets you build on your Java skills. In this chapter, we’ll start on

familiar ground—with Java code—and then move toward Scala. Scala is

similar to Java in several ways and yet different in so many other ways.

Scala favors pure object orientation, but it maps types to Java types

where possible. Scala supports Java-like imperative coding style and

at the same time supports a functional style. Crank up your favorite

editor; we are ready to start on a tour through Scala.

3.1 Scala as Concise Java

Scala has very high code density—you type less to achieve more. Let’s

start with an example of Java code:

Download ScalaForTheJavaEyes/Greetings.java

//Java code

public class Greetings {

public static void main(String[] args) {

for(int i = 1; i < 4; i++) {

System.out.print(i + ",");

}

System.out.println("Scala Rocks!!!");

}

}

Here’s the output:

1,2,3,Scala Rocks!!!

Scala makes quite a few things in the previous code optional. First,

it does not care whether we use semicolons. Second, there is no real

http://media.pragprog.com/titles/vsscala/code/ScalaForTheJavaEyes/Greetings.java

SCALA AS CONCISE JAVA 37

val vs. var

You can define a variable using either a val or a var. The vari-
ables defined using val are immutable and can’t be changed
after initialization. Those defined using var, however, are muta-
ble and can be changed any number of times.

The immutability applies to the variable and not the instance
to which the variable refers. For example, if we write val buffer

= new StringBuffer(), we can’t change what buffer refers to. How-
ever, we can modify the instance of StringBuffer using methods
like append().

On the other hand, if we define an instance of String using
val str = "hello", we can’t modify the instance as well because
String itself is immutable. You can make an instance of a class
immutable by defining all of its fields using val and providing
only the methods that let you read, and not modify, the state
of the instance.

In Scala, you should prefer using val over var as much as possible
since that promotes immutability and functional style.

benefit for the code to live within the class Greetings in a simple example

like this, so we can get rid of that. Third, there’s no need to specify the

type of the variable i. Scala is smart enough to infer that i is an integer.

Finally, Scala lets us use println without typing System.out.println. Here is

the previous code simplified to Scala:

Download ScalaForTheJavaEyes/Greetings.scala

for (i <- 1 to 3) {

print(i + ",")

}

println("Scala Rocks!!!")

To run the previous Scala script, type scala Greetings.scala, or run it

from within your IDE.

You should see this output:

1,2,3,Scala Rocks!!!

The Scala loop structure is pretty lightweight. You simply mention that

the values of the index i goes from 1 to 3. The left of the arrow (<-) defines

a val, not a var (see the sidebar on the current page), and its right side

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/vsscala/code/ScalaForTheJavaEyes/Greetings.scala
http://www.pragprog.com/titles/vsscala

SCALA AS CONCISE JAVA 38

is a generator expression. On each iteration, a new val is created and

initialized with a consecutive element from the generated values.

The range that was generated in the previous code included both the

lower bound (1) and the upper bound (3). You can exclude the upper

bound from the range via the until() method instead of the to() method:

Download ScalaForTheJavaEyes/GreetingsExclusiveUpper.scala

for (i <- 1 until 3) {

print(i + ",")

}

println("Scala Rocks!!!")

You’ll see this output:

1,2,Scala Rocks!!!

Yes, you heard right. I did refer to to() as a method. to() and until() are

actually methods on RichInt,1 the type to which Int, which is the inferred

type of variable i, is implicitly converted to. They return an instance of

Range. So, calling 1 to 3 is equivalent to 1.to(3), but the former is more

elegant. We’ll discuss more about this charming feature in the sidebar

on the next page.

In the previous example, it appears that we’ve reassigned i as we iter-

ated through the loop. However, i is not a var; it is a val. Each time

through the loop we’re creating a different val named i. Note that we

can’t inadvertently change the value of i within the loop because i is

immutable. Quietly, we’ve already taken a step toward functional style

here.

We can also perform the loop in a more functional style using foreach():

Download ScalaForTheJavaEyes/GreetingsForEach.scala

(1 to 3).foreach(i => print(i + ","))

println("Scala Rocks!!!")

Here’s the output:

1,2,3,Scala Rocks!!!

1. We’ll discuss rich wrappers in Section 3.2, Scala Classes for Java Primitives, on the

following page.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/vsscala/code/ScalaForTheJavaEyes/GreetingsExclusiveUpper.scala
http://media.pragprog.com/titles/vsscala/code/ScalaForTheJavaEyes/GreetingsForEach.scala
http://www.pragprog.com/titles/vsscala

SCALA CLASSES FOR JAVA PRIMITIVES 39

The Dot and Parentheses Are Optional

Scala allows you to drop both the dot and the parentheses if a
method takes either zero or one parameter. If a method takes
more than one parameter, you must use the parentheses, but
the dot is still optional. You already saw benefits of this: a + b is
really a.+(b), and 1 to 3 is really 1.to(3).

You can take advantage of this lightweight syntax to create
code that reads naturally. For example, assume we have a
turn() method defined on a class Car:

def turn(direction: String) //...

We can call the previous method in a lightweight syntax as fol-
lows:

car turn "right"

Enjoy the optional dot and parentheses to reduce code clutter.

The previous example is concise, and there are no assignments. We

used the foreach() method of the Range class. This method accepts a

function value as a parameter. So, within the parentheses, we’re pro-

viding a body of code that takes one argument, named in this example

as i. The => separates the parameter list on the left from the implemen-

tation on the right.

3.2 Scala Classes for Java Primitives

Java presents a split view of the world—there are objects, and then

there are primitives such as int, double, and so on. Scala treats every-

thing as objects.

Java treats primitives differently from objects. Since Java 5, autoboxing

allows you to send primitives to methods that expect objects. However,

Java doesn’t let you call a method on a primitive like this: 2.toString().

On the other hand, Scala treats everything as objects. This means you

can call methods on literals, just like you can call methods on objects.

In the following code, we create an instance of Scala’s Int and send it

to the ensureCapacity() method of java.util.ArrayList, which expects a Java

primitive int.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/vsscala

TUPLES AND MULTIPLE ASSIGNMENTS 40

Download ScalaForTheJavaEyes/ScalaInt.scala

class ScalaInt {

def playWithInt() {

val capacity : Int = 10

val list = new java.util.ArrayList[String]

list.ensureCapacity(capacity)

}

}

In the previous code,2 Scala quietly treated Scala.Int as the primitive

Java int. The result is no performance loss at runtime for type conver-

sions.

There is similar magic that allows you to call methods like to() on Int,

as in 1.to(3) or 1 to 3. When Scala determines that Int can’t handle your

request, Scala quietly applies the intWrapper() method to convert3 the

Int to scala.runtime.RichInt and then invokes the to() method on it.

Classes like RichInt, RichDouble, RichBoolean, and so on, are called rich

wrapper classes. They provide convenience methods that can be used

for classes in Scala that represent the Java primitive types and String.

3.3 Tuples and Multiple Assignments

Suppose we have a function that returns multiple values. For example,

let’s return a person’s first name, last name, and email address. One

way to write it in Java is to return an instance of a PersonInfo class that

holds the appropriate fields for data we’d like to return. Alternately, we

can return a String[] or ArrayList containing these values and iterate over

the result to fetch the values. There is a simpler way to do this in Scala.

Scala supports tuples and multiple assignments.

A tuple is an immutable object sequence created as comma-separated

values. For example, the following represents a tuple with three objects:

("Venkat", "Subramaniam", "venkats@agiledeveloper.com").

2. We could have defined val capacity = 10 and let Scala infer the type, but we specified it

explicitly to illustrate the compatibility with Java int.

3. We will discuss implicit type conversions in Section 7.5, Implicit Type Conversions, on

page 101.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/vsscala/code/ScalaForTheJavaEyes/ScalaInt.scala
http://www.pragprog.com/titles/vsscala

TUPLES AND MULTIPLE ASSIGNMENTS 41

We can assign the elements of a tuple into multiple vars or vals in par-

allel, as shown in this example:

Download ScalaForTheJavaEyes/MultipleAssignment.scala

def getPersonInfo(primaryKey : Int) = {

// Assume primaryKey is used to fetch a person's info...

// Here response is hard-coded

("Venkat", "Subramaniam", "venkats@agiledeveloper.com")

}

val (firstName, lastName, emailAddress) = getPersonInfo(1)

println("First Name is " + firstName)

println("Last Name is " + lastName)

println("Email Address is " + emailAddress)

Here’s the output from executing this code:

First Name is Venkat

Last Name is Subramaniam

Email Address is venkats@agiledeveloper.com

What if you try to assign the result of the method to fewer variables or to

more variables? Scala will keep an eye out for you and report an error if

that happens. This error reporting is at compile time, assuming you’re

compiling your Scala code and not running it as a script. For example,

in the following example, we’re assigning the result of the method call

to fewer variables than in the tuple:

Download ScalaForTheJavaEyes/MultipleAssignment2.scala

def getPersonInfo(primaryKey : Int) = {

("Venkat", "Subramaniam", "venkats@agiledeveloper.com")

}

val (firstName, lastName) = getPersonInfo(1)

Scala will report this error:

(fragment of MultipleAssignment2.scala):5: error:

constructor cannot be instantiated to expected type;

found : (T1, T2)

required: (java.lang.String, java.lang.String, java.lang.String)

val (firstName, lastName) = getPersonInfo(1)

^

...

Instead of assigning the values, you can also access individual elements

of a tuple. For example, if we execute val info = getPersonInfo(1), then we

can access the first element using the syntax info._1, the second element

using info._2, and so on.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/vsscala/code/ScalaForTheJavaEyes/MultipleAssignment.scala
http://media.pragprog.com/titles/vsscala/code/ScalaForTheJavaEyes/MultipleAssignment2.scala
http://www.pragprog.com/titles/vsscala

STRINGS AND MULTILINE RAW STRINGS 42

Tuples are useful not only for multiple assignments. They’re useful to

pass a list of data values as messages between actors in concurrent

programming (and their immutable nature comes in handy here). Their

concise syntax helps keep the code on the message sender side very

concise. On the receiving side, you can use pattern matching to con-

cisely receive and process the message, as you’ll see in Section 9.3,

Matching Tuples and Lists, on page 120.

3.4 Strings and Multiline Raw Strings

String in Scala is nothing but java.lang.String. You can use String just like

the ways you do in Java. However, Scala does provide a few additional

conveniences when working with String.

Scala can automatically convert a String to scala.runtime.RichString—this

allows you to seamlessly apply some convenience methods like capital-

ize(), lines(), and reverse.4

If you need to create a string that runs multiple lines, it is really simple

in Scala. Simply place the multiple lines of strings within three double

quotes ("""..."""). That’s Scala’s support for here documents, or heredocs.

Here, we create a string that runs three lines long:

Download ScalaForTheJavaEyes/MultiLine.scala

val str = """In his famous inaugural speech, John F. Kennedy said

"And so, my fellow Americans: ask not what your country can do

for you-ask what you can do for your country." He then proceeded

to speak to the citizens of the World..."""

println(str)

The output is as follows:

In his famous inaugural speech, John F. Kennedy said

"And so, my fellow Americans: ask not what your country can do

for you-ask what you can do for your country." He then proceeded

to speak to the citizens of the World...

Scala lets you embed double quotes within your strings. Scala took the

content within triple double quotes as is, so this is called a raw string

in Scala. In fact, Scala took the string too literally; we wouldn’t want

4. This seamless conversion, however, sometimes may catch you by surprise. For exam-

ple, "mom".reverse == "mom" evaluates false, since we end up comparing an instance of

RichString with an instance of String. "mom".reverse.toString == "mom", however, results in the

desired result of true.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/vsscala/code/ScalaForTheJavaEyes/MultiLine.scala
http://www.pragprog.com/titles/vsscala

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style, and continue to garner awards

and rave reviews. As development gets more and more difficult, the Pragmatic Program-

mers will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Programming Scala’s Home Page

http://pragprog.com/titles/vsscala

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/vsscala.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragprog.com/catalog

Customer Service: orders@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

http://pragprog.com/titles/vsscala
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/vsscala
www.pragprog.com/catalog

