
Extracted from:

The Rails View
Creating a Beautiful and Maintainable User Experience

This PDF file contains pages extracted from The Rails View, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printer versions; the

content is otherwise identical.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

The Rails View
Creating a Beautiful and Maintainable User Experience

John Athayde
Bruce Williams

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Brian Hogan (editor)
Potomac Indexing, LLC (indexer)
Molly McBeath (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2012 Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-93435-687-6
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—March 2012

http://pragprog.com

Preface
In 2004, Rails was born and the web discovered the MVC (model-view-
controller) pattern in earnest, which brought a whole new level of productivity
and fun to a world of developers and designers.

You’ll find no end of books that provide a firm foundation for writing controllers
and models (which benefit greatly from being written top-to-bottom in plain
Ruby), but when it comes to views—that meeting place of Ruby, HTML,
JavaScript, and CSS (not to mention developers and designers)—what’s a
disciplined craftsman to do?

This book aims to widen the discussion of Rails best practices to include
solid, objective principles we can follow when building and refactoring views.
By the time you’re finished reading, you’ll understand how you can structure
your front end to be less brittle and more effective and boost your team’s
productivity.

Taming the Wild West

For all the advantages that Rails has over traditional, everything-in-the-view
approaches like vanilla PHP or ASP, it’s also fostered a culture of complacency
around how views are structured and maintained.

After all, with all the controller and model logic extracted and the addition of
helpers, what could go wrong?

While many of the elements that comprise the view are seen as easy (HTML,
for example), the view layer in its entirety is an incredibly complex thing. This
complexity can be so daunting that developers and designers just give up and
use tables, hackery, and any tweak they can just to make it look somewhat
right on the front end.

There are a lot of reasons for this. Many developers are uneasy around the
view layer, being in such a hurry to get out of it and back to “real code” that
they slap things together and leave a mess. Technical debt in the view layer

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/warv
http://forums.pragprog.com/forums/warv

often goes unpaid, and knowledge of good markup practices can be years
behind or even considered irrelevant. After all, it works all right!

Designers can be uneasy around generated code and, without training, see
ERB blocks as a sort of magical wonderland they can’t hope to understand.
Helpers are just black boxes, and the underlying model relationships and
controller context that drive our views are just as opaque. Many designers
are so visually focused that they, too, disregard the importance and usefulness
of correct, modern markup. After all, it looks all right!

It’s easy for the view layer to become a no-man’s-land that no one owns or
adequately polices or a junkyard that no one feels safe to walk through.

In this book we’ll work hard to convince you not to abdicate responsibility for
the view layer. We’ll work together to learn how we can build application views
sustainably from the ground up, discover useful refactoring patterns and
helpful tools, and tackle integrating disparate technologies like Ruby, HTML,
and JavaScript into a cohesive unit that’s more than just a stumbling block
between you and the new features you need to implement.

Who Should Read This Book?

If you’re a designer working with Rails or a Rails developer working in the
view layer, this book is for you. We’ll cover the technical issues present in the
view layer, and we’ll also highlight some unique challenges that mixed teams
of developers and designers face when working together.

Ruby and Rails Versions

The Rails View was built on top of Rails 3.2.1 and Ruby 1.9.3 and should be
compatible with future stable releases for quite some time. In the event that
we have small compatibility issues with future versions, we will post updates
in the online forum on the book’s website.1

Much of the content and code would need to be modified to work with some
earlier versions due to our coverage of the Rails 3.1+ asset pipeline and use
of the new Ruby 1.9 Hash literal syntax.

You can check your Rails version with the following command:

% rails -v

1. http://www.pragprog.com/titles/warv/

vi • Preface

• Click HERE to purchase this book now. discuss

http://www.pragprog.com/titles/warv/
http://pragprog.com/titles/warv
http://forums.pragprog.com/forums/warv

You can use gem install with the -v option to manually get the appropriate
version.

% gem install rails -v 3.2.1

To manage your Ruby versions, we recommend RVM (Ruby Version Manager).2

What Is in the Book?

We’ll learn how to build solid, maintainable views in Rails over the next nine
chapters.

In Chapter 1, Creating an Application Layout, on page ?, we look at how to
build the view structure for a new application from the ground up and get
our layout files in order to provide a firm foundation for the rest of our
application.

In Chapter 2, Improving Readability, on page ?, we look at how we can make
our templates easier to read and more naturally convey their intent.

In Chapter 3, Adding Cascading Style Sheets, on page ?, we’ll introduce you
to the asset pipeline, explain the new SCSS format, customize the Sprockets
configuration, and talk about how we can package assets into reusable units.

In Chapter 4, Adding JavaScript, on page ?, we’ll continue our discussion
of the asset pipeline, highlighting CoffeeScript, the Rails UJS drivers, and
some organizational techniques for including JavaScript plugins in our
applications.

In Chapter 5, Building Maintainable Forms, on page ?, we tackle forms,
investigate creating our own form builders, and use some existing libraries
to make complex forms easier to build and maintain.

In Chapter 6, Using Presenters, on page ?, we learn some techniques to make
displaying complex information as easy and maintainable as possible from
the view, building abstractions with our own custom Ruby classes.

In Chapter 7, Handling Mobile Views, on page ?, we discuss the challenges
we face with supporting different screen resolutions and geometries, including
mobile devices, and what solutions exist to aid in reusing templates and
styling or whether to separate them altogether.

2. http://rvm.beginrescueend.com

• Click HERE to purchase this book now. discuss

What Is in the Book? • vii

http://rvm.beginrescueend.com
http://pragprog.com/titles/warv
http://forums.pragprog.com/forums/warv

In Chapter 8, Working with Email, on page ?, we discover some tips and
tricks to make sending rich email less frustrating and designing emails less
dependent on trial-and-error.

Finally, in Chapter 9, Optimizing Performance, on page ?, we’ll learn the
basics of measuring and solving application and business performance
problems.

How to Read This Book

Each chapter in this book builds upon the content in the previous chapter.
While examples will center around the ArtFlow application that we’ll begin to
build in Chapter 1, Creating an Application Layout, on page ?, chapters can
be read sequentially or by jumping around to focus on a specific problem.
You should be able to pull the code from our repository for any given chapter
and work with it.

Chapter 1, Creating an Application Layout, on page ?, covers a lot of HTML
and CSS that may seem out of place for a Rails book, but we feel these topics
are critical to writing good views. Spend some time refreshing yourself on this
subject matter even if you are already familiar with it. You may find some
surprises in there!

Online Resources

The book’s website has links to an interactive discussion forum as well as to
errata for the book.3 You’ll also find the source code for all the projects we
built. Readers of the ebook can click the gray box above the code excerpts to
download that snippet directly.

If you find a mistake, please create an entry on the errata page so we can
address it. If you have an electronic copy of this book, use the links in the
footer of each page to easily submit errata to us.

Let’s get started by looking at how views work and by digging into how we
deliver those to our application’s visitors.

3. http://www.pragprog.com/titles/warv/

viii • Preface

• Click HERE to purchase this book now. discuss

http://www.pragprog.com/titles/warv/
http://pragprog.com/titles/warv
http://forums.pragprog.com/forums/warv

