
Extracted from:

The Rails View
Creating a Beautiful and Maintainable User Experience

This PDF file contains pages extracted from The Rails View, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printer versions; the

content is otherwise identical.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

The Rails View
Creating a Beautiful and Maintainable User Experience

John Athayde
Bruce Williams

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Brian Hogan (editor)
Potomac Indexing, LLC (indexer)
Molly McBeath (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2012 Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-93435-687-6
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—March 2012

http://pragprog.com

6.1 Presenting a Record

Let’s put together the presenter class to more easily expose the status data
related to our Designer model. We call it DesignerStatus, since that’s what it is,
and to initialize it, we just pass in the Designer instance. We’ll put it in
lib/designer_status.rb:

class DesignerStatus
def initialize(designer)

@designer = designer
end

end

Our DesignerStatus inherits directly from Ruby’s default Object class. While it’s
easy to become accustomed to using the classes that Rails provides, we’re
not limited to them. Just like Rails itself, we can build our own classes any
time we like.

The data we need to pull together for the view is pulled from some associations
on the designer. We add a few methods to our class:

def active_projects_count
active_projects.count

end

def pending_approvals_count
active_creations.pending_approval.count

end

def approved_count
active_creations.approved.count

end

def active_hours
active_projects.total_hours

end

def hours_per_project
active_projects.inject({}) do |memo, project|

memo[project] = project.total_hours
memo

end
end

private

def active_projects
@designer.projects.active

end

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/warv
http://forums.pragprog.com/forums/warv

def active_creations
@designer.creations.active

end

Our presenter only displays information on the active projects and creations
for the designer, so we’ve created a couple of private methods, active_projects()
and active_creations(), that handle getting that information for us. This way we
won’t need to have the same method chaining repeated in the methods we’ll
be calling from our template.

Now we need to instantiate our DesignerStatus presenter for use in our template.
Sometimes it makes sense for the controller to set up the presenter, especially
in cases where the presenter needs to be configured with session or request
parameters. In this case, however, we prefer to instantiate our presenter in
a helper because it’s purely a view concern: it’s only used from a template
and it doesn’t need any additional information about the request. The con-
troller doesn’t necessarily need to retrieve or instantiate every single object a
template might need. Here it’s the view’s job. We’ll use a helper method we’ll
put in app/helpers/designers_helper.rb to create the presenter instance.

module DesignersHelper
def designer_status_for(designer = @designer)

presenter = DesignerStatus.new(designer)
if block_given?

yield presenter
else

presenter
end

end
end

This helper takes an optional designer and defaults to the current @designer if
it’s not provided. When we’re in an action template focused on a single
designer (like the show() action of DesignersController), using this keeps our tem-
plate brief and it doesn’t lock us out of cases where we’d want to display
status information for multiple designers on a single template, since we can
just pass in the specific Designer record whenever we need it.

Once we instantiate our presenter, we yield it to the block if we can, which
would let us invoke methods repeatedly on the presenter without having to
assign it in the template (we don’t do that, as we covered in Chapter 2,
Improving Readability, on page ?).

Now that we have our presenter instance, let’s put together the Designer
Dashboard view that uses it, which is rendered by the DesignersController show()
action from app/views/designers/show.html.erb:

6 •

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/warv
http://forums.pragprog.com/forums/warv

<% designer_status_for do |status| %>
<section class='designer-status'>

<title>Status</title>
<dl>

<dt>Active Projects</dt>
<dd><%= status.active_projects_count %></dd>
<dt>Pending Approval</dt>
<dd><%= status.pending_approvals_count %></dd>
<dt>Approved</dt>
<dd><%= status.approved_count %></dd>

</dl>
<h3>Active Project Hours</h3>
<table>

<tr>
<th>Project</th>
<th>Hours</th>

</tr>
<% status.hours_per_project.each do |project, hours| %>
<tr>

<td><%= link_to project.name, project %></td>
<td><%= hours %></td>

</tr>
<% end %>
<tr>
<th>Total</th>
<td><%= status.active_hours %></td>

</tr>
</table>

</section>
<% end %>

This is great! We have all of these helpers bundled together into one unit
without muddying our model or losing them in the crush of methods in our
helper modules.

How can we support this more generically and make using the presenter
elsewhere in the application as easy as possible? As we said before, we’d like
to display this information in other places, too, but we’d like the information
to be more condensed. Let’s extract the designer status markup out of our
show.html.erb into a partial, _status.html.erb, and add a condition to determine if
we want the “expanded” view that includes our hourly breakdown by project.
We’ll also remove the designer_status_for() call since we won’t need it; we’ll be
passing in our DesignerStatus instance when we render the partial, instead of
creating it there.

artflow/presenters/app/views/designers/_status.html.erb
<section class='designer-status'>

<title>Status</title>
<dl>

• Click HERE to purchase this book now. discuss

Presenting a Record • 7

http://media.pragprog.com/titles/warv/code/artflow/presenters/app/views/designers/_status.html.erb
http://pragprog.com/titles/warv
http://forums.pragprog.com/forums/warv

Joe asks:

When Should I Use a Presenter?
Here are a few signs a part of your view could be better built or refactored as a
presenter:

• It displays specialized, complex data for a record or an aggregation of records,
especially if it requires grouping, sorting, calculations, or transformation to new
data structures for view-specific iteration.

• It uses several interrelated helpers, especially if they call each other, pass around
some type of shared state, are grouped together by a common prefix, or have
been considered cohesive enough to be extracted into a separately named helper
module.

• It’s displayed by an action whose authentication or other environmental con-
straints would make testing the view difficult or slow.

<dt>Active Projects</dt>
<dd class='active-projects'><%= status.active_projects_count %></dd>
<dt>Pending Approval</dt>
<dd class='pending-creations'><%= status.pending_approvals_count %></dd>
<dt>Approved</dt>
<dd class='approved-creations'><%= status.approved_count %></dd>

</dl>
<% if status.expanded? %>➤

<h3>Active Project Hours</h3>
<table>

<tr>
<th>Project</th>
<th>Hours</th>

</tr>
<% status.hours_per_project.each do |project, hours| %>
<tr>

<td><%= link_to project.name, project %></td>
<td><%= hours %></td>

</tr>
<% end %>
<tr>

<th>Total</th>
<td><%= status.active_hours %></td>

</tr>
</table>

<% end %>➤

</section>

We need to add an expanded?() method to our DesignerStatus and support an
options hash passed to our initializer:

8 •

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/warv
http://forums.pragprog.com/forums/warv

artflow/presenters/lib/designer_status.v3.rb
def initialize(designer, options = {})

@designer = designer
@options = options

end

def expanded?➤

@options[:expanded]➤

end➤

In expanded?() we just look for a non-nil or non–false :expanded option. Let’s update
our helper to accept additional options and pass them along. We’ll make the
default non-expanded, since usually we’ll want the short status displayed:

def designer_status_for(designer = @designer, options = {})➤

presenter = DesignerStatus.new(designer, options)➤

if block_given?
yield presenter

else
presenter

end
end

Now we can change how our show.html.erb template renders the presenter now
using the partial. We pass along the presenter instance using the :object option,
which will make sure it’s assigned to a variable with the same name as the
partial (in this case, status):

artflow/presenters/app/views/designers/show.v2.html.erb
<%= render partial: 'status',

object: designer_status_for(@designer, expanded: true) %>

We can go even farther than this, tossing out the need for a render() in our
template at all. We can make the DesignerStatus render itself! To do this, our
class needs access to the template instance. This isn’t a problem, since our
helpers are executed in the context of the view; self is what we need to give
our presenter. We edit our designer_status_for() helper and pass it along:

artflow/presenters/app/helpers/designers_helper.rb
def designer_status_for(designer = @designer, options = {})

presenter = DesignerStatus.new(designer, self, options)➤

if block_given?
yield presenter

else
presenter

end
end

end

• Click HERE to purchase this book now. discuss

Presenting a Record • 9

http://media.pragprog.com/titles/warv/code/artflow/presenters/lib/designer_status.v3.rb
http://media.pragprog.com/titles/warv/code/artflow/presenters/app/views/designers/show.v2.html.erb
http://media.pragprog.com/titles/warv/code/artflow/presenters/app/helpers/designers_helper.rb
http://pragprog.com/titles/warv
http://forums.pragprog.com/forums/warv

Now the DesignerStatus initialize() method needs to be modified to accept the
template argument:

artflow/presenters/lib/designer_status.rb
def initialize(designer, template, options = {})
@designer = designer
@template = template
@options = options

end

Now that our presenter has the template instance, what can we do with it?
Well, let’s look at how we want to add the markup for the designer status
from our template:

artflow/presenters/app/views/designers/show.html.erb
<%= designer_status_for(@designer, expanded: true) %>

Wow, that’s short! What’s going on here?

When we insert content with ERB, it automatically calls to_s() (read: “to string”)
on the content first. Let’s define that method on our DesignerStatus presenter
so that inserting our presenter will work out of the box:

artflow/presenters/lib/designer_status.rb
def to_s
@template.render partial: 'designers/status', object: self

end

It’s just as easy to generate the condensed version of our designer status
elsewhere, as we do on the page for a project, showing the status for the
designers styled as a badge:

artflow/presenters/app/views/projects/show.html.erb

<% @project.designers.each do |designer| %>

<%= designer_status_for(designer) %>
<% end %>

Keep in mind we don’t need to use the rendering shortcut or even need to
use the partial at all. We can use designer_status_for() at any point, in any tem-
plate, and extract any of the bits of data we need directly by calling methods
on the DesignerStatus instance. We could support more options in our presenter,
hide and show additional information, or even render an entirely different
partial based on some criteria. Presenters can be amazingly flexible pieces of
machinery.

10 •

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/warv/code/artflow/presenters/lib/designer_status.rb
http://media.pragprog.com/titles/warv/code/artflow/presenters/app/views/designers/show.html.erb
http://media.pragprog.com/titles/warv/code/artflow/presenters/lib/designer_status.rb
http://media.pragprog.com/titles/warv/code/artflow/presenters/app/views/projects/show.html.erb
http://pragprog.com/titles/warv
http://forums.pragprog.com/forums/warv

Testing Template Presenters

There are a few aspects of these presenters that make sense to test. We should
test the presenter instances themselves to make sure they’re accurately
extracting the data from the related records. We should also make sure users
are seeing what we expect; that the helper creating the presenter instance
behaves correctly, and that the template for the presenter displays the infor-
mation as we’d like it to.

Let’s focus on the DesignerStatus presenter, helper, and template that we put
together in Section 6.1, Presenting a Record, on page 5, and look at how we
might build our tests. We’ll move from the core behavior of the presenter out
to what the user sees.

Since presenters are just plain old Ruby objects, we can test them with a
plain unit test. We’ll use an ActiveSupport::TestCase, since it gives us some niceties
(like String test names):

artflow/presenters/test/unit/designer_status_test.rb
require 'test_helper'
class DesignerTest < ActiveSupport::TestCase

def setup
setup_designer
@status = DesignerStatus.new(@designer, nil)

end

test 'DesignerStatus instance calculates active projects' do
assert_equal 3, @status.active_projects_count

end

test 'DesignerStatus instance calculates hours' do
assert_equal [2, 2, 2], @status.hours_per_project.values
assert_equal 6, @status.active_hours

end
end

Here we instantiated our DesignerStatus just as our helper would, except we
pass in nil instead of a template or a fancy mock. We’re not testing the to_s()
method: the template won’t be tested.

In the test’s setup() we create a Designer and related Project and Creation records
by calling a method, setup_designer(), that we defined in our test helper:

artflow/presenters/test/test_helper.rb
require 'factories'
class ActiveSupport::TestCase

We don't use fixtures, so we comment this out:
fixtures :all

• Click HERE to purchase this book now. discuss

Presenting a Record • 11

http://media.pragprog.com/titles/warv/code/artflow/presenters/test/unit/designer_status_test.rb
http://media.pragprog.com/titles/warv/code/artflow/presenters/test/test_helper.rb
http://pragprog.com/titles/warv
http://forums.pragprog.com/forums/warv

def setup_designer
@designer = Factory(:designer)
3.times do

creation = Factory(:creation, hours: 2, designer: @designer)
@designer.projects << creation.project

end
@designer.save

end

end

This setup_designer() utility method builds our objects using factory_girl, a test
fixture library we prefer to Rails’s built-in, static YAML-based fixtures.1 Static
fixtures are fine, but it’s nice to be able to dynamically generate fixture data
at will, trying out different combinations of data and using shortcuts like the
Faker gem to give it a little variety.2 Here are the definitions we’re using and
loading from factories.rb:

artflow/presenters/test/factories.rb
Factory.define :designer do |x|
x.sequence(:email) { |n| "designer#{n}@artflowme.com" }
x.password 'testtest'

end

Factory.define :project do |x|
x.sequence(:name) { |n| "Project #{n}" }
x.association :campaign
x.active true

end

Factory.define :campaign do |x|
x.sequence(:name) { |n| "Campaign #{n}" }

end

Factory.define :creation do |x|
x.sequence(:name) { |n| "Creation #{n}" }
x.association :project
x.association :designer
x.stage 'initial'
x.revision 1
x.description "This is a description"

end

With our prepopulated designer, we can test our active_projects_count(),
hours_per_project(), and active_hours() methods to make sure they extract the data
we expect from our record. We can build on this as the data we need to display

1. https://github.com/thoughtbot/factory_girl
2. http://rubygems.org/gems/faker

12 •

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/warv/code/artflow/presenters/test/factories.rb
https://github.com/thoughtbot/factory_girl
http://rubygems.org/gems/faker
http://pragprog.com/titles/warv
http://forums.pragprog.com/forums/warv

grows, and having these tests around will help prevent regression in the
future; it seems likely time tracking and reporting will become more and more
complex as our project grows.

Now let’s make sure our helper behaves correctly. We’ll do this with a Action-
View::TestCase unit test:

artflow/presenters/test/unit/helpers/designers_helper_test.rb
require 'test_helper'

class DesignersHelperTest < ActionView::TestCase

def setup
setup_designer
@status = DesignerStatus.new(@designer, nil)

end

test 'designer_status_for helper returns a DesignerStatus instance' do
assert_kind_of DesignerStatus, designer_status_for(@designer)

end

test 'designer_status_for helper yields a DesignerStatus instance' do
yielded = nil
designer_status_for(@designer) { |obj| yielded = obj }
assert_kind_of DesignerStatus, yielded

end

end

So far we’re just concerned with making sure the helper returns or yields the
DesignerStatus, but we can test the presenter to_s() method, too; since Action-
View::TestCase sets up a template for us, we can use render()! We’ll check that
it’s working as expected by checking a bit of the resulting content:

artflow/presenters/test/unit/helpers/designers_helper_test.rb
test 'calling to_s returns status markup' do

status = designer_status_for(@designer)
assert status.to_s.include?('<title>Status</title>')

end

test 'non-expanded status markup does not include active hours' do
status = designer_status_for(@designer)
assert !status.to_s.include?('Active Project Hours')

end

test 'expanded status markup includes active hours' do
status = designer_status_for(@designer, expanded: true)
assert status.to_s.include?('Active Project Hours')

end

• Click HERE to purchase this book now. discuss

Presenting a Record • 13

http://media.pragprog.com/titles/warv/code/artflow/presenters/test/unit/helpers/designers_helper_test.rb
http://media.pragprog.com/titles/warv/code/artflow/presenters/test/unit/helpers/designers_helper_test.rb
http://pragprog.com/titles/warv
http://forums.pragprog.com/forums/warv

We’re careful not to test too much of the markup. We want to avoid writing
brittle tests that will break unnecessarily the next time someone tweaks the
look and feel of the designer status widgets. Instead of ensuring that the
structure of the returned markup meets today’s expectations, we focus on
verifying important pieces of information that are more likely to stand the
test of time.

Let’s add a quick test for our DesignersController show() action, where we display
the “expanded” designer status. We’ll limit our assertions to verifying that
the presenter is rendered and just check the number of active projects dis-
played for our designer.

artflow/presenters/test/functional/designers_controller_test.rb
require 'test_helper'

class DesignersControllerTest < ActionController::TestCase

def setup
setup_designer

end

test "should render designer status presenter" do
get :show, id: @designer.id
assert_response :success
assert_select 'section.designer-status .active-projects', text: '3'

end

end

Once again we don’t want to exhaustively test the structure of the markup,
and since our unit tests will check the accuracy of the data our presenter
extracts from the record, there’s no need to double-check it here. Verifying
the presenter is displayed for the designer is enough and is the best “bang
for our buck.”

Now that we’ve used a presenter to show information from one record, let’s
look at how we can use it to help us deal with aggregations of records.

14 •

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/warv/code/artflow/presenters/test/functional/designers_controller_test.rb
http://pragprog.com/titles/warv
http://forums.pragprog.com/forums/warv

