
Extracted from:

The Rails View
Creating a Beautiful and Maintainable User Experience

This PDF file contains pages extracted from The Rails View, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printer versions; the

content is otherwise identical.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

The Rails View
Creating a Beautiful and Maintainable User Experience

John Athayde
Bruce Williams

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Brian Hogan (editor)
Potomac Indexing, LLC (indexer)
Molly McBeath (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2012 Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-93435-687-6
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—March 2012

http://pragprog.com

2.2 Standardizing Coding Practices

It’s important that teams follow consistent, sane rules when it comes to
writing templates and style sheets, from indentation standards to the ordering
of CSS properties.

Say we’ve been away on vacation for the past week, soaking up the sun
somewhere suitably tropical and devoid of Internet access. We’ve come back
and found a mess. Our team has been working furiously on new features,
and the templates look like a bowl of half-cooked spaghetti.

What does half-cooked spaghetti look like in code? Avoiding ASCII art, it’s
really what happens when we’ve let our code go during development. Line
length is all over the place, indents are haphazard, tags are not balanced,
and we don’t know what we’re closing when we have a closing </div>. It’s hard
to read, hard to maintain, and hard to extend. Obviously we need to do
something.

Indenting Without Hard Tabs

One of the first things we discover is that some members of our team are
using hard tabs (“hard” refers to using tab characters, as opposed to ”soft”
tabs, which are spaces that emulate tabs). This causes portability problems
across editors and other tools and is inconsistent with the way Ruby develop-
ers write code.

Tabs vs. spaces is somewhat of a holy war in programming circles. We at
ArtFlow Industries Inc. use spaces because we have many programmers,
some of whom prefer tab stops of differing sizes. This becomes a major issue
when we agree on, say, a four-space indent per line. Each individual has tab
stops set differently. For example, Frank uses two-space tabs. So each time
he indents a line with tabs, he inserts two tab characters to achieve the
required four-space indent. Sam likes four-space tab stops, so he only tabs
once. When Frank opens Sam’s recent commits, the indentation is all wrong
in his text editor because it renders tabs as two spaces. Likewise, when Sam
opens Frank’s commits, things are overindented, like in Figure 9, Indenting
going horribly wrong, on page 6.

This gets really bad when Sam decides to reflow his code to make it look
better on his editor. He then commits this to our source code repository, and
when we try to discover who has made specific changes to the file, it looks as
if Sam’s modified the entire file (because, well, he has), as we see in Figure
10, Minor whitespace changes can look like major modifications, on page 7.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/warv
http://forums.pragprog.com/forums/warv

Figure 9—Indenting going horribly wrong

This causes a big problem; let’s fix it. We replace all tabs with standard two-
space indentation, and we make sure our team members are using editors
that transparently support soft tabbing.

Indenting for Logic and Markup

For our ArtFlow app/views/clients/index.html.erb template we have a listing of clients
that breaks an important rule on page ?:

<% @clients.each do |client| %>
<%= link_to client.name, client %>
<% end %>

The contents of any pair of tags—either HTML opening and closing tags or
the start and end tags for an ERB block—should be indented a level to indicate
hierarchy. Things inside a pair of tags are effectively children of the parent
tag. The purpose of indentation is to visually indicate hierarchy and nesting,
no matter which types of tags are involved.

Here it would be helpful to immediately see that our ERB loop is inside the
 tag merely by scanning the template. At first glance here, it appears to
be a sibling. Let’s change the indenting to be cleaned up the way we want it.

artflow/readability/app/views/clients/index.html.erb

<% @clients.each do |client| %>

<%= link_to client.name, client %>
<% end %>

6 •

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/warv/code/artflow/readability/app/views/clients/index.html.erb
http://pragprog.com/titles/warv
http://forums.pragprog.com/forums/warv

Figure 10—Minor whitespace changes can look like major modifications

A good way to think about this is to imagine that the ERB tags are inserted
into the hierarchy between the and its child tags. Following this
simple rule will help make the logical and physical structure of templates
more obvious.

Don’t worry about how the generated HTML looks. Browsers are the ones that
do the reading (or during debugging, Firebug and the Chrome developer tools
are the ones that clean things up2).

Policing Line Length

As developers, we’ve all had the experience where we see code go off the right
edge of the editor screen.

2. http://getfirebug.com/ and http://code.google.com/chrome/devtools/, respectively.

• Click HERE to purchase this book now. discuss

Standardizing Coding Practices • 7

http://getfirebug.com/
http://code.google.com/chrome/devtools/
http://pragprog.com/titles/warv
http://forums.pragprog.com/forums/warv

Joe asks:

But My Whole Team Has Massive Monitors.
Why Can’t We Use Line Lengths More Than 80
Characters Wide?

Even with extra-large monitors in many development environments, the reality is
that we still hit code from a variety of devices and with a variety of preferences. Many
users bump up the font size so that while it may be 1600 pixels wide, it’s still only
80–100 characters wide.

Using 78–80 characters is a standard for editing that will work on almost any system,
because that is the default width of terminals, including older VAX systems. Your
team can decide to go longer, but our rule for this team will be 80.

For more guidance on line length (and many other concepts in this chapter), we rec-
ommend Clean Code: A Handbook of Agile Software Craftsmanship [Mar08], by Robert
C. Martin.

Anything over eighty characters will potentially float off in the ether if someone
views it from a terminal window, and scrolling horizontally (either physically
in the window or with our eyes on a high resolution screen) back and forth
makes for slow reading. It’s easier to read a narrow block of text than one
that stretches across the width of the screen. If we break it into multiple lines,
we can see everything at once much easier.

Soft wrapping might sound like a solution, but it’s a Band-Aid that makes
line editing more difficult and doesn’t work well when our developers use
command-line utilities.

Some text editors, such as TextMate, have a column counter and a wrap
column setting so you automatically know when you hit your determined
character limit. They also have macros and other tools to help with reformat-
ting large blocks of text.

Lining Up Tags and Attributes

When tag contents span multiple lines, take care to line up the opening and
closing tags horizontally and indent the contents one level. Working on the
marketing copy for ArtFlow, you can see our <p> and tags are lined up
correctly and their contents set a level deeper.

Let’s look at a snippet from ArtFlow’s homepage as an example:

8 •

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/warv
http://forums.pragprog.com/forums/warv

Joe asks:

A New Line for Every Element?
If there’s an inline markup tag, such as , <i>, , , <abbr>, <dfn>, and
similar tags, we do not always kick them to a new line. It’s about improving readabil-
ity. If putting one word on a new line doesn’t improve readability, don’t do it.

artflow/readability/app/views/pages/home.html.erb
<p>

Have a file, store a file.
Then change it, tag it, and share it or send it.

This isn't your father's asset management application.

</p>

When we stack lots of classes or have long ID and class names, we can end
up with a long line just for one HTML element. We fix this with a newline
between attributes (and some care to line them up):

<p id="product-description"
class="important blurb rounded">

Have a file, store a file.
Then change it, tag it, and share it or send it.

This isn't your father's asset management application.

</p>

We can add ERB comments to our template for TODOs, placemarkers, or
short descriptions for complex markup. They look like normal ERB tags and
start with a # character, just like Ruby comments do:

<%# TODO: Add list of articles. -BW 2011-11-01 %>

While adding ERB comments can clarify and illuminate, at some point they
can also make a page messy and more cluttered, and just like code comments,
it’s easy to let them get out-of-date. Less is more!

Now that we have some basic formatting rules to serve as our foundation,
let’s dig into the way we’re actually building up our markup to see if we can
simplify things and make our template more readable.

• Click HERE to purchase this book now. discuss

Standardizing Coding Practices • 9

http://media.pragprog.com/titles/warv/code/artflow/readability/app/views/pages/home.html.erb
http://pragprog.com/titles/warv
http://forums.pragprog.com/forums/warv

Joe asks:

Why ERB Comments Instead of HTML Comments?
HTML comments are present in your generated markup and visible to users of your
application (if they’re curious and click View Source). ERB comments get stripped
out long before your page ever gets to a browser. This doesn’t matter so much for
smaller apps, but a few kilobytes here and there can start to add up over millions of
users (just ask Twitter).

Use ERB comments unless you really want to whisper something to the geekiest of
your users—or as a temporary debugging technique.

10 •

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/warv
http://forums.pragprog.com/forums/warv

