Extracted from:

Web Development Recipes

This PDF file contains pages extracted from Web Development Recipes, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or
PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printer versions; the
content is otherwise identical.

Copyright © 2010 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Dallas, Texas - Raleigh, North Carolina

http://www.pragprog.com

Weti)eveloIgmgnt
ecipes

Brian P. Hogan,
Chris Warren,
Mike Weber,
Chris Johnson,
and Aaron Godin

edited by Susannah Davidson Pfalzer

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Susannah Pfalzer (editor)
Potomac Indexing, LLC (indexer)
Kim Wimpsett (copyeditor)
David J Kelly (typesetter)

Janet Furlow (producer)

Juliet Benda (rights)

Ellie Callahan (support)

Copyright © 2012 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-13: 978-1-93435-683-8

Printed on acid-free paper.

Book version: P1.0—January 2012

http://pragprog.com

Problem

When we need to present long, categorized lists on a website, the best way to
do it is with nested, unordered lists. However, when users are presented with
this kind of layout, it can be hard to quickly navigate, or even comprehend,
such a large list. So, anything we can do to assist our users will be appreciat-
ed. Plus, we want to make sure that our list is accessible in case JavaScript
is disabled or a user is visiting our site with a screen reader.

Ingredients
* jQuery

Solution

A relatively easy way to organize a nested list, without separating the categories
into separate pages, is to make the list collapsible. This means that entire
sections of the list can be hidden or displayed to better convey selective infor-
mation. At the same time, the user can easily manipulate which content
should be visible.

For our example, we’ll start with an unordered list that displays our products
grouped by subcategories.

Download collapsiblelist/index.html
<hl>Categorized Products</hl>

<ul class='collapsible'>

Music Players

<1i>16 Gb MP3 player
<1i>32 Gb MP3 player
<1i>64 Gb MP3 player

<li class='expanded'>
Cameras & Camcorders

SLR

<1i>D2000</1i>
<1i>D2100</1i>

<li class='expanded'>
Point and Shoot

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/wbdev/code/collapsiblelist/index.html
http://pragprog.com/titles/wbdev
http://forums.pragprog.com/forums/wbdev

G6</1i>
G12</1i>
<1i>CS240</1i>
<1i>L120</1i>

Camcorders

HD Cam
<Lli>HDR-150</1i>
Standard Def Cam</1li>

We’'ll want to be able to indicate that some of the nodes should be collapsed
or expanded from the start. It would be tempting to simply mark the collapsed
nodes by setting the style to display: none. But that would break accessibility
since screen readers ignore content hidden like this. Instead, we're going to
rely on JavaScript to toggle each node’s visibility at runtime. We did this by
adding a CSS class of “expanded” to set the initial state of the list.

If we knew the user wanted to look at “Point and Shoot Cameras” when they
first reached this page, for example, this markup wouldn’t show the limited
list yet. Right now it will show the full categorized product list, as shown in
Figure 13, Our full categorized list without collapsibility, on page 7. But once
the list is made collapsible, the user would see only the names of the products
they were looking for, as shown in Figure 14, Our collapsed list, on page 7.

Then, without navigating away from the page, they can still choose to look at
any of our other product categories.

Next we need to write the JavaScript for adding our collapsible functionality,
as well as some Expand all and Collapse all helper links at the top of the list. Notice
that we're adding the links via the JavaScript code as well. Like the collapsible
functionality itself, we don’t want to change the markup unless we know this
code is going to be used. This also gives us the advantage of being able to
easily apply this behavior to any list on our site without having to change any
markup beyond adding a .collapsible class to a element.

To start things off, we will write a function that toggles whether a node is
expanded or collapsed. Since this is a function that will act on a DOM obiject,
we will write it as a jQuery plug-in. That means we will assign the function

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/wbdev
http://forums.pragprog.com/forums/wbdev

Categorized Products

= Music Players
o 16 Gb MP3 player
o 32 Gb MP3 player
o 64 Gb MP3 player
= (Cameras & Camcorders
o SLR
= D2000
= D2100
o Point and Shoot
= G6
= G12
= CS240
= 1120
o Camcorders
= HD Cam
= HDR-150

= Standard Def Cam

Figure 13—Our full categorized list without collapsibility

Categorized Products

Expand all | Collapse all
+Music Players

+Cameras & Camcorders

Figure 14—Our collapsed list

Download collapsiblelist/javascript.js
(function($) {
$.fn.toggleExpandCollapse = function(event) {
event.stopPropagation();
if (this.find('ul').length > 0) {

definition to the jQuery.fn prototype. We can then trigger the function within
the scope of the element that it was called against. The function definition
should be wrapped within a self-executing function so we can use the $ helper
without worrying about whether the $ helper has been overwritten by another
framework. Finally, to make sure that our jQuery function is chainable and
a responsible jQuery citizen, we return this. This is a good practice to follow
when writing jQuery plug-ins; our plug-in functions will work the same way
that we expect other jQuery plug-ins to work.

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/wbdev/code/collapsiblelist/javascript.js
http://pragprog.com/titles/wbdev
http://forums.pragprog.com/forums/wbdev

event.preventDefault();
this.toggleClass('collapsed').toggleClass('expanded').
find('> ul').slideToggle('normal');
}

return this;

}
}) (jQuery);

We will bind the toggleExpandCollapse() to the click event for all elements,
including the elements with nothing underneath them, also known as leaf
nodes. That’s because we want the leaf nodes to do something crucial—abso-
lutely nothing. Unhandled click events bubble up the DOM, so if we only attach
a click observer to the elements with .expanded or .collapsed classes, the click
event for a leaf node would bubble up to the parent element, which is
one of our collapsible nodes. That means the code would trigger that node’s
click event, which would make it collapse suddenly and unexpectedly, and
we’d be liable for causing undue harm to our users’ fragile psyches. To prevent
this Rube Goldberg-styled catastrophe from happening, we call event.stopProp-
agation(). Adding an event handler to all elements ensures the click event
will never bubble up and nothing will happen, just like we expect. For more
details on event propagation, read Why Not Just Return False?, on page 9.

As mentioned at the beginning of the chapter, we want to give our users helper
links that appear at the top of the list to toggle all of the nodes. We can create
these links within jQuery and prepend them to our collapsible list. Because
building HTML in jQuery can become verbose, we're better off moving the
click event logic into separate helpers to prevent the prependToggleAllLinks()
functions from becoming unreadable.

Download collapsiblelist/javascript.js
function prependToggleAllLinks() {
var container = $('<div>').attr('class', 'expand or collapse all');
container.append(
$('<a>").attr('href', '#').
html('Expand all').click(handleExpandAll)
).
append(' | ').
append(
$('<a>").attr("href', '"#').
html('Collapse all').click(handleCollapseAll)
)
$('ul.collapsible') .prepend(container);

}

function handleExpandAll(event) {
$('ul.collapsible li.collapsed').toggleExpandCollapse(event);
}

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/wbdev/code/collapsiblelist/javascript.js
http://pragprog.com/titles/wbdev
http://forums.pragprog.com/forums/wbdev

*9

In a jQuery function, return false works double duty by telling the event not to bubble
up the DOM tree and not to do whatever the element’s default action is. This works
for most events, but sometimes we want to make the distinction between stopping
event propagation and preventing a default action from triggering. Or we may be in
a situation where we always want prevent the default action, even if the code in our
function somehow breaks. That’s why at times it may make more sense to call
event.stopPropagation() or event.preventDefault() explicitly rather than waiting until the end
of the function to return false.”

a. http: //api.jquery.com/category/events/event-object/

function handleCollapseAll(event) {
$('ul.collapsible li.expanded').toggleExpandCollapse(event);
}

We can quickly create a DOM object by wrapping a string representing the
element type we want, in this case an <a> tag, in a jQuery element. Then we
set the attributes and HTML through jQuery’s API. For simplicity’s sake, we're
going to create two links that say “Expand all” and “Collapse all” that are
separated by a pipe symbol. The two links will trigger their corresponding
helper functions when they're clicked.

Finally, we will write an initialize function that gets called once the page is
ready. This function will also hide any nodes that were not marked as .expanded
and add the .collapsed class to the rest of the elements.

Download collapsiblelist/javascript.js
function initializeCollapsibleList() {
$('ul.collapsible li').click(function(event) {
$(this).toggleExpandCollapse(event);
1)
$('ul.collapsible li:not(.expanded) > ul').hide();
$('ul.collapsible 1i ul').
parent(':not(.expanded)"').
addClass('collapsed');
}

We bind the click event to all of the elements that are in a .collapsible list.
We also added the expand/collapse classes to all of the elements, except
the products themselves. These classes will help us when it comes time to
style our list.

« Click HERE to purchase this book now. discuss

http://api.jquery.com/category/events/event-object/
http://media.pragprog.com/titles/wbdev/code/collapsiblelist/javascript.js
http://pragprog.com/titles/wbdev
http://forums.pragprog.com/forums/wbdev

10 ¢

When the DOM is ready, we’ll tie it all together by initializing the list and
adding the “Expand all” | “Collapse all” links to the page.

Download collapsiblelist/javascript.js

$(document) . ready(function() {
initializeCollapsibleList();
prependToggleAllLinks();

1)

Since this is a jQuery plug-in, we can easily add this functionality to any list
on our site by adding a .collapsible class to an unordered list. This makes the
code easily reusable so that any long and cluttered list can be made easy to
navigate and understand.

Further Exploration

If we start out by building a solid, working foundation without JavaScript,
we can build upon that foundation to add in extra behavior. And if we write
the JavaScript and connect the behavior into the page using CSS classes
rather than adding the JavaScript directly to the HTML itself, everything is
completely decoupled. This also keeps our sites from becoming too JavaScript
dependent, which means more people can use your sites when JavaScript
isn’t available. We call this progressive enhancement, and it’s an approach
we strongly recommend.

When building photo galleries, make each thumbnail link to a larger version
of the image that opens on its own page. Then use JavaScript to intercept
the click event on the image and display the full-sized image in a lightbox,
and then use JavaScript to add any additional controls that are useful only
when JavaScript is enabled, just like we did in this recipe.

When you're building a form that inserts records and updates the values on
the screen, create the form with a regular HTTP POST request first, and then
intercept the form’s submit event with JavaScript and do the post via Ajax.
This sounds like more work, but you end up saving a lot of time; you get to
leverage the form’s semantic markup and use things like jQuery’s serialize()
method to prepare the form data, rather than reading each input field and
constructing your own POST request.

Techniques like this are well-supported by jQuery and other modern libraries
because they make it easy to build simple, accessible solutions for your
audience.

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/wbdev/code/collapsiblelist/javascript.js
http://pragprog.com/titles/wbdev
http://forums.pragprog.com/forums/wbdev

« 1

Also See

e Recipe 9, Interacting with Web Pages Using Keyboard Shortcuts, on page

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/wbdev
http://forums.pragprog.com/forums/wbdev

