Extracted from:

Web Development Recipes

This PDF file contains pages extracted from Web Development Recipes, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or
PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printer versions; the
content is otherwise identical.

Copyright © 2010 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Dallas, Texas - Raleigh, North Carolina


http://www.pragprog.com

Weti)eveloIgmgnt
ecipes

Brian P. Hogan,
Chris Warren,
Mike Weber,
Chris Johnson,
and Aaron Godin

edited by Susannah Davidson Pfalzer



Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Susannah Pfalzer (editor)
Potomac Indexing, LLC (indexer)
Kim Wimpsett (copyeditor)
David J Kelly (typesetter)

Janet Furlow (producer)

Juliet Benda (rights)

Ellie Callahan (support)

Copyright © 2012 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-13: 978-1-93435-683-8

Printed on acid-free paper.

Book version: P1.0—January 2012


http://pragprog.com

Problem

Users want simple methods to locate their destination, and they want that
information quickly in an easy and accessible manner. While addresses and
written directions work, the simplest way is to glance at a map, memorize the
street number, and grab your keys and go. By including a map on our site,
we immediately give users a sense of where things are located and how they
can get there.

Ingredients
¢ The Google Maps API

Solution

Using the Google Maps API, we can bring the power and functionality of Google
Maps into our own application. We can render maps of two types: static and
interactive. The static map is an image that we can insert into our page,
whereas the interactive map allows for zooming and panning. The Google
Maps API supports any programming language that can make a request to
Google’s servers. The documentation includes a lot of JavaScript examples,
which is perfect for our needs.'

We can use the API to accomplish any task that a user could accomplish in
the full application. We can render maps of two types: static and interactive.
The static map is an image that we can insert into our page, whereas the
interactive map allows for zooming and panning.

Along with rendering maps, the JavaScript API lets us insert other elements
on the maps. We can place markers and bind mouse events to the markers.
We can also create pop-out dialogs that show information directly within the
map. We can show street views, geolocate the user, create routes and
directions, and draw custom models on the map. The sky is in fact the limit
until Google launches its space program and takes over NASA.”

We're working with a local university to develop a map for their web page for
new visitors. The Admissions office wants to show these visitors where they
can find places to eat as well as where to park. We'll create an interactive
map that contains markers and information by using the JavaScript Google
Maps APIL.

1. http://code.google.com/apis/maps/documentation/javascript/reference.html

2. http://www.google.com/space

« Click HERE to purchase this book now. discuss


http://code.google.com/apis/maps/documentation/javascript/reference.html
http://www.google.com/space
http://pragprog.com/titles/wbdev
http://forums.pragprog.com/forums/wbdev

6°

Let’s start off by creating a basic HTML document. We will declare the
<DOCTYPE> as HTMLS5 as a recommendation from Google; however, if you can’t
use <DOCTYPE html> in your application, you're not explicitly required to do so.

Download googlemaps/map_example.html
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Freshman Landing Page</title>
<style>
</style>
<script type="text/javascript">
</script>
</head>
<body>
</body>
</html>

Next, we'll include the Google Maps JavaScript API in our document. To make
this request, we need to define whether our application is using a sensor to
determine our user’s location. Since this is not within the scope of the tutorial,
we will set it to false.

Download googlemaps/map_example.html

<script type="text/javascript"
src="http://maps.google.com/maps/api/js?sensor=false">

</script>

The API requires a <div> to act as a container for the map, so we’ll add that
to our page.

Download googlemaps/map_example.html
<div id="map_canvas"></div>

The map will scale to the size of this container, so let’s set dimensions on this
<div> with CSS, by adding it to a new <style> section in our page’s <head> region
like this:

Download googlemaps/map_example.html
#map canvas {

width: 600px;

height: 400px;
}

This container is now ready to hold a map that is 600x400 pixels. Let’s go
fetch some data.

« Click HERE to purchase this book now. discuss


http://media.pragprog.com/titles/wbdev/code/googlemaps/map_example.html
http://media.pragprog.com/titles/wbdev/code/googlemaps/map_example.html
http://media.pragprog.com/titles/wbdev/code/googlemaps/map_example.html
http://media.pragprog.com/titles/wbdev/code/googlemaps/map_example.html
http://pragprog.com/titles/wbdev
http://forums.pragprog.com/forums/wbdev

Loading the Map with JavaScript

At the bottom of our <head> region, let’s add a <script> block to hold the code
that will initialize our map. We'll create a function called loadMap() to load the
map based on our latitude and longitude, and we’ll make this happen when
the browser window loads. If you're using a framework such as jQuery in
your project, you can do the loading of the map inside of your DOM-ready
call, but we’ll do this with vanilla JavaScript for our example.

Download googlemaps/map_example.html
window.onload = loadMap;

Next, we'll create the loadMap() function. Since we’re not using a sensor, we'll
hard-code our latitude and longitude. These coordinates define the center
point of the map. To find these values, we have a few options. We could navi-
gate to Google Maps, find what we want to center our map on, right-click a
pin, and select “What’s here?” The values for latitude and longitude appear
in the search box. Alternatively, we can use Google Maps Lat/Long Popup.®
This application allows us to click a location to find our values.

Download googlemaps/map_example.html
function loadMap() {
var latLong = new google.maps.LatLng(44.798609, -91.504912);
var mapOptions = {
zoom: 15,
mapTypeld: google.maps.MapTypelId.ROADMAP,
center: latLong

};

var map = new google.maps.Map(document.getElementById("map canvas"),
mapOptions);

}

Within this function, we create an object to hold some options for our map.
We can define the type of map we want, a zoom value, and more. The zoom
requires some experimentation; the higher the number, the further in it zooms.
A value of 15 works well for street-level maps.

We can change how the map appears by setting a different mapTypeld. Note
that zoom values along with maximum ranges for zoom change when changing
map type. You can find a reference for map types in the Google Maps API
documentation.*

3. http://www.gorissen.info/Pierre/maps/googleMapLocationv3.php

4. http://code.google.com/apis/maps/documentation/javascript/reference.html#Map-

« Click HERE to purchase this book now. discuss


http://media.pragprog.com/titles/wbdev/code/googlemaps/map_example.html
http://media.pragprog.com/titles/wbdev/code/googlemaps/map_example.html
http://www.gorissen.info/Pierre/maps/googleMapLocationv3.php
http://code.google.com/apis/maps/documentation/javascript/reference.html#MapTypeId
http://code.google.com/apis/maps/documentation/javascript/reference.html#MapTypeId
http://pragprog.com/titles/wbdev
http://forums.pragprog.com/forums/wbdev

8e

Finally, we create the map. The Map constructor requires that we pass the
DOM element that will hold the map along with our object containing the
options. When we load this page in our browser, as shown in Figure 21, The

Creating Marker Points

To show incoming freshman where they can go to get a bite to eat or otherwise
be social, we will create markers on the map. A marker in Google Maps is one
of many overlays that we can add. Overlays respond to a click event, and we
will use this to show an info window when the marker is clicked.

Since we already have our map, creating the marker is as simple as invoking
the constructor and passing some options.

Download googlemaps/map_example.html
mogieslLatlLong = new google.maps.LatlLng(44.802293, -91.509376);
var marker = new google.maps.Marker({
position: mogiesLatlLong,
map: map,
title: "Mogies Pub"
i

To define a marker, we pass the latitude and longitude coordinates, the map
that will hold the marker, and a title that appears when we hover over the
marker.

Next, let’s create the info window that appears when this marker is clicked.
To create an info window, invoke the constructor.

Download googlemaps/map_example.html
var mogiesDescription = "<h4>Mogies Pub</h4>" +
"<p>Excellent local restaurant with top of the line burgers and sandwiches.</p>";
var infoPopup = new google.maps.InfoWindow({
content: mogiesDescription
1)

Finally, we need to add an event handler to the marker. Using the Google
Maps event object, we add a listener to open the info window.

Download googlemaps/map_example.html
google.maps.event.addListener(marker, "click", function() {
infoPopup.open(map,marker);

1)

When we click the marker, a new window shows up that gives us information
about the location, as you can see in Figure 22, A clicked marker, on page

« Click HERE to purchase this book now. discuss


http://media.pragprog.com/titles/wbdev/code/googlemaps/map_example.html
http://media.pragprog.com/titles/wbdev/code/googlemaps/map_example.html
http://media.pragprog.com/titles/wbdev/code/googlemaps/map_example.html
http://pragprog.com/titles/wbdev
http://forums.pragprog.com/forums/wbdev

*9

5. = g- - fanl
E Randall P Satellite |
A Miagara St %, Miagara 5t Park 2 * = E—
p \ »
PEVEY > Owen Park 'P@“ -
St th Chippewa St 53 =1
w g S A = ~ %,
> 2 5 & z 7.
4 "
ter St 2 © Water 5t T £ &£ Water St 2 Gibert 4,0
%- fig
|
Menomonie St SUmm:
~ A
3 §
g
et = 4 =
Mt | o ES
1 5]
W Garr, =
UW-EC W&u\? :% i
o
= o Gay
an ety 0r E Mekintey 5 2
z £
R Fy
E G, QG‘SE""«?«J:A =
ful ) Ve =
ik Ridge 4
University Dr i Bartiett O Rt
o
2 a4
3
Sacred Heart - A,
e, [
| Hospital University, of Glia
- H Wisconsin - Eau
—f Claire Campus Wy o
Frontzge Rd -
E'Th L y0 0 | 4V Clairemont Ave @ EB W Clairemont Ave
Map data @2011 G@M

Figure 21—The initial map

We can add any amount of HTML that we wish to the window. This gives us
the freedom to show large amounts of information. From here, we can gather
the coordinates of other points of interest and build the rest of the map.

Further Exploration

We have only scratched the surface of what can be accomplished with the
Google Maps API. Along with markers, there are other layers of interaction
that make the map more usable for your customers. You can create directions,
map routes, use geolocation, and even add street views. Each of these features
is well explained in the Google Maps API documentation,’ and there are a

number of working examples to follow along with.

Google Maps is just one component of the Google APIs. To see a full list of
Google APIs, take a look at the Google APIs and Developer Products Page.’

Also See
e Recipe 17, Building a Simple Contact Form, on page ?

5. http://code.google.com/apis/maps/documentation/javascript/reference.html
6. http://code.google.com/more/table

« Click HERE to purchase this book now. discuss


http://code.google.com/apis/maps/documentation/javascript/reference.html
http://code.google.com/more/table
http://pragprog.com/titles/wbdev
http://forums.pragprog.com/forums/wbdev

m— {;i%;u;u11 am - Terms of E.I:s&

Figure 22—A clicked marker

e Recipe 18, Accessing Cross-site Data with JSONP, on page ?
¢ Recipe 19, Creating a Widget to Embed on Other Sites, on page ?

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/wbdev
http://forums.pragprog.com/forums/wbdev



