
Extracted from:

Web Development Recipes
Second Edition

This PDF file contains pages extracted from Web Development Recipes,, Second
Edition, published by the Pragmatic Bookshelf. For more information or to purchase

a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2015 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Web Development Recipes
Second Edition

Brian P. Hogan
Chris Warren
Mike Weber

Chris Johnson

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Rebecca Gulick (editor)
Potomac Indexing, LLC (index)
Eileen Cohen; Cathleen Small (copyedit)
Dave Thomas (layout)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-056-1
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—July 2015

https://pragprog.com
rights@pragprog.com

Recipe 5

Creating and Styling Accessible Tooltips

Problem
We have a page with lots of jargon, and we’ve been asked to build in function-
ality that lets visitors hover over terms to see their definitions. However, we
have to ensure that the functionality can be used with assistive devices such
as screen readers, since the page we’re building will be accessed by people
with disabilities.

Ingredient
• jQuery

Solution
With a small amount of CSS, some jQuery, the HTML5 ARIA specification,7

and only a tiny amount of effort, we can create tooltips that work for everyone.
When we’re done we’ll have something that looks like this:

We’ll construct a library that’ll work for widespread use throughout our site,
but let’s develop it by making a prototype page with a basic HTML skeleton:

accessible_tooltips/index.html
<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Definitions</title>
<link rel="stylesheet" href="tooltips.css">

</head>
<body>

</body>
</html>

7. http://www.w3.org/TR/html5-author/wai-aria.html

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/wbdev2/code/accessible_tooltips/index.html
http://www.w3.org/TR/html5-author/wai-aria.html
http://pragprog.com/titles/wbdev2
http://forums.pragprog.com/forums/wbdev2

The skeleton includes link to a style sheet file, tooltips.css, which will control
the visibility of elements and the way our tooltips look. It’ll also contain code
that styles the word so it’s apparent to users that they can interact with it.

Next, let’s add some dummy text. We need a paragraph, and in that paragraph
we want to have a specific keyword. When we hover over that word we want
the definition to appear, so let’s mark up the paragraph like this:

accessible_tooltips/index.html
<p>It's a perfectly

cromulent

adjective
Appearing legitimate but actually being spurious.

word.

</p>

<p>Another paragraph of text.</p>

We place the keyword in a tag, and we place the definition of that word
inside its own . We apply a tabindex to the outer so that visitors
can interact with the keyword via the keyboard by pressing the Tab key.

We also associate the keyword to its definition in our markup, using the aria-
describedby tag, and we apply role="tooltip" to the element that makes up the
tooltip. These small touches are what make interfaces more friendly to tech-
nologies like screen readers, which are used by blind and low-vision visitors
who need the text on the screen read to them by the computer.

Now let’s link up jQuery and our own custom tooltips.js file:

accessible_tooltips/index.html
<script

src="http://ajax.googleapis.com/ajax/libs/jquery/2.1.4/jquery.min.js">
</script>
<script src="tooltips.js"></script>

We’ll look through our document for any elements that have the definition class.
For each one we find, we’ll find its associated tooltip and hide it. But we won’t
use jQuery’s show() or hide() methods. Instead, we modify the aria-hidden attribute
of the tooltip, setting its value to true to ensure that screen-reading software
is aware of the tooltip’s visible state:

accessible_tooltips/tooltips.js
(function($){

var $definitions = $('.definition');

• 2

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/wbdev2/code/accessible_tooltips/index.html
http://media.pragprog.com/titles/wbdev2/code/accessible_tooltips/index.html
http://media.pragprog.com/titles/wbdev2/code/accessible_tooltips/tooltips.js
http://pragprog.com/titles/wbdev2
http://forums.pragprog.com/forums/wbdev2

$definitions.find('.tooltip').attr('aria-hidden','true');
})(jQuery);

Then in tooltips.css we locate the elements with the aria-hidden attributes and
style them appropriately:

accessible_tooltips/tooltips.css
.definition .tooltip[aria-hidden='true'] {

display: none;
}

.definition .tooltip[aria-hidden='false'] {
display:block ;

}

As soon as our JavaScript code sets the aria-hidden attribute to true, these CSS
rules hide the element. And when we set the value to false, the elements show
up again.

While we’re here, let’s add the styling for the definition. We add an underline
to the word so we let users know it’s something they can interact with. And
we set the display property of the word we’re defining to inline-block, which helps
the definition appear closer to the word and ensures that any trailing spaces
aren’t underlined. We also add a slight drop shadow and a background to the
tooltip:

accessible_tooltips/tooltips.css
.definition {

display: inline-block;
text-decoration: underline;

}

.definition .tooltip {
background-color: #ffe;
box-shadow: 5px 5px 5px #ddd;
padding: 1em;
position: absolute;

}

All that’s left to do is apply the actual behavior. When the user hovers or tabs
to a keyword, we want to show the definition. And when the user moves focus
away, we want to hide it. That means we need to handle mouse events as well
as focus events for keyboard navigation. That turns out to be pretty easy with
jQuery:

accessible_tooltips/tooltips.js
function showTip(){

$(this).find('.tooltip').attr('aria-hidden', 'false');
}

• Click HERE to purchase this book now. discuss

Creating and Styling Accessible Tooltips • 3

http://media.pragprog.com/titles/wbdev2/code/accessible_tooltips/tooltips.css
http://media.pragprog.com/titles/wbdev2/code/accessible_tooltips/tooltips.css
http://media.pragprog.com/titles/wbdev2/code/accessible_tooltips/tooltips.js
http://pragprog.com/titles/wbdev2
http://forums.pragprog.com/forums/wbdev2

function hideTip(){
$(this).find('.tooltip').attr('aria-hidden', 'true');

}

$definitions.on('mouseover focusin', showTip);
$definitions.on('mouseout focusout', hideTip);

And if you want to support other events, such as the touch events we work
with in Recipe 25, Mobile Drag and Drop on page ?, you can add those to
the event handlers, too.

That’s all there is to it. When we open the page, we can hover over our word
and see the definition. Best of all, because we applied a tabindex, we can activate
it when we hit the Tab key also. And because the tooltip is associated with
its parent, it should work well for screen-reading software.

Further Exploration
In our implementation, the tooltip is a child element of the element we hover
on, and we used a element, so we can’t place <div> elements or other
block-level elements in the tooltip. But it doesn’t have to work that way. We
could move the tooltip contents elsewhere in the markup and then use the
aria-describedby role to locate the element and display its contents in our Java-
Script code. Then we could place video content, images, or pretty much any-
thing we want in that tooltip. And it would be accessible to everyone.

In this recipe we used our tooltips for definitions, but we can place any content
we want, whether it’s more information about a hyperlink or an inline help
documentation for user interface items. Don’t get carried away; the information
you place should supplement the main content. After all, it does require
interaction from the user to read the content you’ve hidden. Also, be sure you
don’t attach it to an element in such a way that it’s triggered accidentally,
obscuring the text on the screen. Some people track the words they read with
the mouse, and surprise pop-ups won’t keep you in their good graces.

Also See
• Recipe 31, Cleaner JavaScript with CoffeeScript on page ?
• Recipe 30, Building Modular Style Sheets with Sass on page ?
• Recipe 37, Testing JavaScript with Jasmine on page ?
• Recipe 25, Mobile Drag and Drop on page ?

• 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/wbdev2
http://forums.pragprog.com/forums/wbdev2

