
1 2 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 4 / $ 2 0 . 0 0 © 2 0 0 4 I E E E

software construction
E d i t o r s : D a v e T h o m a s a n d A n d y H u n t ■ T h e P r a g m a t i c P r o g r a m m e r s
d a v e @ p r a g m a t i c p r o g r a m m e r. c o m ■ a n d y @ p r a g m a t i c p r o g r a m m e r. c o m

A
ndy and I have never been completely
comfortable with the name of this col-
umn—we don’t really believe in the
concept of “construction” as being a
separate activity in the development
process. Having something called

“construction” makes it easy for some in the
industry to Balkanize the concept—“Oh, that’s
just a construction detail.” Even the name con-

struction has connotations that make it seem
somewhat manual compared to the more cere-
bral “analysis” and “design” phases.

Let’s use a construction metaphor to see
why that’s dangerous.

Building houses?
For “historical reasons,” Dave lives in a Dallas

suburb, one of those communities where new
houses spring up like watercress on a Chia Pet.
Somewhere behind each of these houses is a set of
plans, and behind the plans is an architect. How-
ever, it’s a fairly safe bet that none of these archi-
tects have come out to the neighborhoods they

designed and hefted a brick or eyed a joist during
construction. Why? Because they didn’t need to.
The properties of these materials are well under-
stood and documented. If the architect needs to
know the maximum span of a floor member,
there’s a convenient table with all the information
he or she needs. The average household brick
holds few surprises. The details of construction
have become abstract—the designer no longer
needs to deal with the physical materials.

But ask an architect to design a building us-
ing some radically new material, and the situa-
tion changes. They’ll ask for samples, so they
can hold it and get a feel for it. They’ll ask engi-
neers to determine the properties and might
even conduct tests to see how the material be-
haves in real life. And during construction,
they’ll visit the site, watching how well theory
maps into practice. They’ll talk with the work-
ers, examine the construction, and make many,
many minor adjustments as small issues come to
light. They’ll be involved.

Many IT folks wish that software develop-
ment were like building suburbs in Dallas.
They wish that their raw materials were totally
understood, with their properties tabulated.
These folks dream of repeatable processes that
they could invoke as if they were recipes. Andy
and I feel that way—it would be nice to be able
to assemble complex systems by aggregating
well-understood components according to a
verified set of rules.

But, wishing aside, we’re not there yet. Soft-
ware construction isn’t like building houses in
the burbs.

Practice
Dave Thomas and Andy Hunt

N o v e m b e r / D e c e m b e r 2 0 0 4 I E E E S O F T W A R E 1 3

SOFTWARE CONSTRUCTION

Get your hands dirty

So, if we’re going to insist on using
a construction metaphor, we’ll have to
accept that we’re working more like
the second group of architects. We
don’t fully understand our materials
and our processes, so when we design
and specify, we’ll have to get more in-
volved with the details. It’s just the
way it is.

What does this mean in practice? It
means that, like the architect, we can’t
work from theory and abstractions—
we have to get our hands dirty. Until
we get to the point where code mod-
ules are as well understood as bricks
and joists, senior industry people will
have to stay involved at the construc-
tion end of things. Designers need to
have coding experience in the types of
systems they’re designing. Architects
should have worked on projects con-
structing similar applications. Educa-
tors and consultants should have gen-
uine and productive work experience
before telling their students how pro-
jects should be run.

But prior experience alone isn’t
enough. Just like an architect who vis-
its the site to check that her ideas are
translating well into the real world,
these senior software people can’t just
throw another idea over the wall and
leave it to others to find a way to im-
plement them. Designers need to work
with their teams to see how well the de-
signs actually work in practice. Does
something that seemed easy at a high
level have nasty implications when you
actually code it? Does a structure that
seemed elegant and decoupled on pa-
per turn out to be a bowl of spaghetti
when you add in all the exception han-
dling and error recovery?

Analysts need to do the same. Does
what looked like a neat and tidy hier-
archy during requirements gathering
turn out to be not quite as structured
when the real world intervenes? You
won’t know unless you’re down there
working with the team as it churns
through the specification.

Equally, educators and consultants
have a duty to discover if the tech-
niques and practices they tout actually

work. Often the best strategies from
five years ago are less applicable today
as technology and techniques move
ever onward.

Back in the ’80s, Patricia Benner ad-
dressed the problems of the nursing
profession in her landmark book From
Novice to Expert: Excellence and
Power in Clinical Nursing Practice
(Prentice Hall, 2001). Using the Drey-
fus Model of Skills Acquisition, she
turned around the training and devel-
opment of an entire profession. One of
her recommendations was to keep ex-
perts in practice. That’s a lesson we can
take to heart.

A practical challenge
A while back, we submitted a Con-

struction column called “How to Pro-
duce Better Software.” The first page
was blank, apart from the title. The
second page was blank too. In the mid-
dle of the third page, in nine-point
type, was the word “practice.” The
idea didn’t make it into print, which is
a shame, because practice is really at
the core of producing better software.
It’s likely that we can all do with more
time to practice the important things,
to experiment with new ideas and tech-
nologies. But time pressures are relent-
less, and this practice time is hard won.

So, here’s a challenge. If you’re an
expert leading others in the field, ask
yourself if you have all the current ex-
perience you need to direct that work.
How much time do you spend working
with the raw materials, getting the feel
of them? How much time do you spend
on projects to see how well your ideas
translate into reality? How much feed-
back do you carry forward into your
next project? Could you benefit from
more practice down at the sharp end?
If so, maybe now would be a good time
to get that practice. If you’re a designer

who doesn’t currently get the opportu-
nity to code your designs, suggest that
you want to do some programming on
the next project. If you’re an analyst
who doesn’t get to work with develop-
ment teams once you finish your speci-
fication, ask to spend some time with
them, working to map your ideas into
working code. If you’re a consultant or
educator who doesn’t get to spend time
actually working on teams, offer to
work on a project so you can see how
well your ideas work in practice.

Maybe we should have asked that
this department be renamed “Practice”
when we took it on. Ultimately, that’s
what it’s about.

Dave Thomas and Andy Hunt are partners in
The Pragmatic Programmers and authors of the Jolt Productivity
Award-winning The Pragmatic Starter Kit book series. Contact
them via www.PragmaticProgrammer.com.

This is our last Software Construction column—we’re focusing our energies on
getting our new Pragmatic Bookshelf publishing business launched. We’d like to
thank the folks at IEEE Software for giving us this opportunity and thank you for
reading these columns over the last three years. Do keep in touch with us at
www.pragmaticprogrammer.com. —Dave & Andy

SOFTWARE CONFIGURATION ARCHI-
TECT – Must have MS in Computer Sci-
ence or related, 2 yrs exp in the job of-
fered, and authorization to work in the
U.S. on a permanent basis. Apply best
J2EE practices including developing JSPs
and EJBs. Map and build complete soft-
ware configuration strategy. Correlate
SCM process with building and deploy-
ing enterprise application on Win-
dows/UNIX servers. 40-hrs/wk, 8a-5p, M
to F. Qualified applicants send resumes to
Humanizing Technologies, Attn: K. Fer-
nung, 6325 Digital Way, Ste. 330, Ind-
pls., IN 46278.

www.geo.oregonstate.edu/igert

Classified Advertising

SUBMISSION DETAILS: Rates are
$110.00 per column inch ($300
minimum). Eight lines per column
inch and average five typeset
words per line. Send copy at least
one month prior to publication
date to: Marian Anderson, IEEE
Software Magazine, 10662 Los Va-
queros Circle, PO Box 3014, Los
Alamitos, CA 90720-1314; (714)
821-8380; fax (714) 821-4010.
Email: manderson@computer.org.

