Programmingn Ruby

Dave Thomas Andy Hunt!

Septembefl3,2000

!Dave and Andy are authorsof ProgrammingRubyand The Pragmatic Programmer both
from Addison-Weslg.. They run an independentonsultang from officesin Dallas, TX and
Raleigh,NC. Contactthemvia www.pragmaticprogrammer.com

Take the pure object-orientatiorof Smalltalk, but remove the quirky syntaxandthe
relianceon a workspace.Add in the corvenienceand power of Perl, but without all
the specialcasesandmagiccorversions.Wrapit upin a cleansyntaxbasedn partof
Eiffel, andadda few conceptdrom SchemeCLU, Sather and CommonLisp. You
endup with Ruby, a languagethatis alreadymore popularthanPythonin its native
Japan.

Rubyis apure,untyped object-orientedanguage—jusabouteverythingin Rubyis an
object,andobjectreferencesrenot typed. Peoplewho enjoy exploring differentOO
programmingparadigmswill enjoy experimentingwith Ruby: it hasa full metaclass
model,iterators closuresreflection,andsupportgheruntimeextensionof bothclasses
andindividual objects.

Ruby is beingusedworld-wide for text processingXML andweb applications GUI
building, in middle-tier seners, and generalsystemadministration. Ruby is usedin
artificial intelligenceandmachine-learningesearchandasan enginefor exploratory
mathematics.

Ruby’s simplesyntaxandtransparensemanticsnale it easyto learn.Its directexecu-
tion modelanddynamictyping let you develop codeincrementally:you cantypically

add a featureand thentry it immediately with no needfor scafolding code. Ruby
programsaretypically more concisethantheir Perlor Pythoncounterpartsandtheir

simplicity makesthemeasierto understanéndmaintain. Whenyou bumpup against
somefacility that Ruby is lacking, you'll find it easyto write Ruby extensions poth

usingRubyandby usinglow level C codethataddsnew featureso thelanguage.

We cameacrossRuby whenwe werelooking for a languageto useasa prototyping
andspecificatiortool. We've usedit on all of our projectssince. We have Ruby code
performingdistributedlogging,executingwithin anX/Windowswindow managerpre-

compilingthe text of a book,andgeneratingndexes. Ruby hasbecomeour language
of choice.

This article looks at just a few of the interestingandinnovative featuresof the Ruby
language.

Everything's An Object

Everythingyou manipulatein Rubyis an object,andall methodsare invokedin the
context of anobject.Let’'slook at severalexamples.

"gin joint".length - 9

"Rick".index("c") - 2

-1942.abs — 1942

sam.play(aSong) — "duh dum, da dum de dum .."

In RubyandSmalltalkjargon,all methodcallsareactuallymessagesentto anobject.
Here,thething beforethe periodis calledthereceiver andthe nameafterthe periodis
themethodto beinvoked.

Thefirst exampleasksa string for its length,andthe secondasksa differentstringto
find theindex of theletter“c.” Thethird line hasa numbercalculatets absolutevalue.
Finally, we askthe object“sam” to play usasong.

It's worth noting a major differencebetweerRuby andmostotherlanguagesin (say)
Java, you'd find the absolutevalue of somenumberby calling a separatéunctionand
passingn thatnumber In Ruby, the ability to determineabsolutevaluesis built into
numbers—thg take careof the detailsinternally. You simply sendthe messageabs
to anumberobjectandlet it do thework.

number = Math.abs(humber) /I Java
number = number.abs /I Ruby

The sameappliesto all Ruby objects:in C you'd write strlen(name) , while in
Rubyit’'s name.length , andsoon. Thisis partof whatwe meanwhenwe saythat
Rubyis agenuineOO language.

And onelastthing (for now) on calling methods:the parentheseare optionalunless
theresultwould beambiguousThisis a big win for parameterlessethodsasit cuts
down onthecluttergeneratedby all those() pairs.

Classes and M ethods

As example 1 shaws, Ruby classdefinitions are remarkablysimple: the keyword
class followed by a classname,the classbody, andthe keyword end to finish it
all off. Rubyfeaturessingleinheritance:every classhasexactly onesuperclassyhich
canbespecifiedasshavn in example2. A classwith no explicit parentis madea child
of classObject —theroot of the classhierarchy andis the only classwith no super
class. If you're worried that a singleinheritancemodeljustisn’t enough never fear
We'll betalking aboutRuby’s mixin capabilitiesshortly.

Let's getbackto the definition of classSong in examplel. The classcontainstwo
methoddefinitions,initialize andto _s. Theinitialize methodparticipates
in objectconstruction.To createa Ruby object,you sendthe messagaew to the ob-
ject’s class,asshavn in the lastline of the example. This new messagallocatesan
empty uninitializedobject,andthensendshe messagénitialize to thatobject,
passingalong ary parameterghat were originally givento new. This makesini-
tialize roughly equialentto constructorsn C++andJava.

OurclassSong alsocontainghedefinitionof themethodto _s. Thisis acorvenience
method.Rubysendgo _s to anobjectwheneerit needdo representhatobjectasa
string. By overridingthe defaultimplementatiorof to _s (whichis in classObject)

we getto control how our objectsare printed, for exampleby tracing statementsand
thedehugger andwheninterpolatedn strings.

In example2, we createa subclas®f classSong, overridingboththeinitialize
andto _s methods.n bothof the nev methodswe usethe super keywordto invoke

theequivalentmethodn ourparentclass.ln Ruby, super is notareferenceo aparent
class;insteadit is anexecutablestatementhatreinvokesthe currentmethod skipping
ary definitionin the classof the currentobject.

Attributes, Instance Variables, and Bertrand Meyer

Theinitialize methodin classSong containgheline
@title = title

Namesthat startwith single“at” signs(@) areinstancevariables—variablesthatare
specificto a particularinstanceor objectof a class. In our case,eachSong object
hasits own title, soit makessenseto have thattitle be an instancevariable. Unlike
languagesuchasJava andC++, you don't have to declareyour instancevariablesin
Ruby;they springinto existencethefirst time to referencehem.

Another differencebetweenRuby and Java/C++is that you may not export an ob-

ject’s instancevariablesthey areavailableto subclassedyut are otherwiseinaccessi-
ble. (This is roughly equivalentto Jasa’s protected concept). Instead,Ruby has
attributes: methodsthat get andsetthe stateof an object. You caneitherwrite these
attributemethodsyourself,asshovn in example3, or usethe handy-dandyrRubyshort-
cutsin example4.

It's interestingto notethe methodcalledtitie= in example3. The equalssigntells
Ruby that this methodcan be assignedo—it canappearon the left-handside of an
assignmenstatementlf you wereto write

asong.title = "Chicago"
Rubytranslatedt into acalltothetitte= methodpassing'Chicago”asaparameter

This may seemlik e sometrivial syntacticsugarbut it's actuallya fairly profoundfea-

ture. You cannow write classesvhoseattributesactasif they werevariablesput are
actuallymethodcalls. This decoupleghe usersof your classfrom its implementation:
you're free to changean attribute back and forth betweensomealgorithmicimple-

mentationanda simpleinstancevariable. In his landmarkObject-OrientedSoftwae

Construction BertrandMeyer callsthis the “Uniform AccessPrinciple”

Blocksand Iterators

Have you ever wantedto write your own control structuresor packageup lumps of
codewithin objects?Ruby’s block constructetsyou do justthat.

A blockis simply a chunkof codebetweerbracespr betweerdo andend keywords.
WhenRuby comesacrossa block, it storesthe block’s codeaway for later; the block

is not executed.In this way, a block is similar to an anorymousmethod. Blocks can
only appeaiin Rubysourcealongsidemethodcalls.

A block associatedavith a methodcall canbe invoked from within that method. This
soundsnnocuoushut this singlefacility letsyou write callbacksandadaptorshandle
transactionsandimplementyour own iterators.Blocks arealsotrue closuresyremem-
bering the contect in which they were defined,evenif that context hasgoneout of
scope Let’sjustlook at blocksasiteratorsfor now.

The methodin example5 implementsan iterator that returnssuccessie Fibonacci
numbergqthe serieshatstartswith two 1's,andwhereeachtermis the sumof the two
precedingerms). The mainbody of the methodis a loop that calculateghe termsof
the series. Thefirst line in the loop containsthe keyword yield , which invokesthe
blockassociatewvith themethod,n this casepassingasaparametethenext Fibonacci
number Whenthe block returns the methodcontainingtheyield resumesThusin
our Fibonacciexample,the block will be invoked oncefor eachnumberin the series
until somemaximumis reached.

Example6 shaws this in action. The call to fibUpTo hasa block associatedvith it
(thecodebetweerthebraces) This blocktakesa singleparameter-thenamebetween
theverticalbarsat the startof the block is like a methods parametetist. The body of
theblock simply printsthis value.

If youwrite your own collectionclassegor ary classeshatcontaina streanof values)
you canbenefitfrom the realbeautyof Ruby’s iterators. Sayyou've producech class
that storesobjectsin a singly-linkedlist. The methodeach shown in example? tra-
verseghislist, invoking ablock for eachnode.Thisis a Visitor Patternin athreelines
of code.

The choiceof the name,each , wasnot arbitrary If your classimplementsaneach
method,thenyou can get a whole setof other collection-orientedmethodsfor free,
thanksto the Enumerable mixin.

Modules, Mixins, and Multiple Inheritance

Modulesare classeghat you can' instantiate: you can't usenew to createobjects
from them,andthey cant have superclasse#t first, they might seempointlessputin
reality moduleshave two majoruses.

e Modulesprovide namespacesConstantandclassmethodsmay be placedin a
modulewithoutworrying abouttheirnamesonflictingwith constantandmeth-
odsin othermodules. This is similar to the ideaof putting staticmethodsand
variablesin a Java class. In both Java and Ruby you canwrite Math.PI to
accesghe value of w (althoughin Ruby, Pl is a constantratherthana final
variable,andyou’re morelik ely to seethe notationMath::Pl).

Blocks and Closures

A Ruby block can be converted into an object of class Proc . These
Proc objects can be stored in variables and passed between meth-
ods just like any other object. The code in the corresponding block
can be executed at any time by sending the Proc object the message
call

Ruby Proc objects remember the context in which they were created:
the local variables, the current object and so on. When called, they
recreate this context for the duration of their execution, even if that
context has gone out of scope. Other languages call proc objects
closures.

The following method returns a Proc object.

def times(n)
return Proc.new { |vall n * val }
end

The block multiplies the method’s parameter, “n”, by another value,
which is passed to the block as a parameter. The following code
shows this in action.

double = times(2)

double.call(4) - 8
santa = times("Ho! ")
santa.call(3) — "Ho! Ho! Ho!

Even though the parameter “n” is out of scope when the double and
santa objects are called, its value is still available to the closures.

e Modulesalsoarethe basisfor mixing a mechanisnby which you add canned
behaior to your classes.

Perhapghe easiestvay to think aboutmixins is to imaginethatyou could write code
in aJavainterface.Any classthatimplementeduchaninterfacewould receve notjust
atypesignaturejt would recevve the codethatimplementedhatsignatureaswell. We
caninvestigatethis by looking at the Enumerable module,which addscollection-
basednethodso classeshatimplementthe methodeach .

Enumerable implementsthe methodfind (amongothers).find returnsthe first
memberof a collectionthatmeetssomecriteria. This exampleshonsfind in action,
looking for thefirst elementin anarraythatis greaterthatfour.

[1,3,5,7,9].find {li i >4 — 5

ClassArray doesnotimplementthefind method. Instead,it mixesin Enumer-
able ,whichimplementdind intermsof Array 'seach method.Example8 shows

how this might be done. Contrastthis approachwith both Java andC#, whereit is up
to the classimplementingthe collectionto alsoprovide a considerablemountof sup-
portingscafolding.

Although a classmay have only one parentclass(the single inheritancemodel), it
maymix in any numberof modules.This effectively givesRubythe power of multiple
inheritancewithoutsomeof theambiguitieshatcanarise.(And in casesvheremixing
in moduleswould causea nameclash,Ruby supportsiffel-style methodrenaming.)

Other good stuff

This article is too shortto do justiceto all of Ruby However, let’s briefly touchon
someadditionalhighlights.

Classesand modulesare never closed You canaddto andalterall classesand
moduleg(includingthosebuilt in to Rubyitself).

Reflection As well assupportingreflectioninto both classesandindividual ob-
jects,Rubyletsyoutraversethelist of currentlyactive objects.

Marshalling. Ruby objectscanbe serializedanddeserializedallowing themto
be saved externally and transmittedacrossnetworks. A full distributed object
systemDRDb, is written in about200linesof Rubycode.

Libraries Ruby hasa large (and growing) collection of libraries. All major
Internetprotocolsare supportedasaremostmajor databasesExtendingRuby
is simplecomparedvith (say)Perl.

Threads Ruby hasbuilt-in supportfor threadsanddoesnt rely onthe underly-
ing operatingsystentor threadsupport.

Objectspecialization Youcanaddmethodgo individual objects notjustclasses.
This canbe usefulwhendefiningspecializetehaior for objects(for example,
determininghow they respondo GUI events).

ExceptionsRubyhasafully object-orientedextensibleexceptionmodel.

Garbage collection Ruby objectsare automaticallygarbagecollectedusinga
mark-and-sweeplgorithm. As well assimplifying programmingthe choiceor
mark and sweepmakeswriting extensionseasier(no referencecountingprob-
lems).

Activedevelopercommunity TheRubydevelopmentommunityis still abazaay
small, intimate,andbustling. Changesare discusseapenlyandare madeeffi-
ciently. You canhave animpacton Ruby.

Some Real Examples

We finish off by looking at two larger Ruby programs.Thefirst is a basicweb sener
thatechoedackthe headerst receves. It's written astwo classesshawn in listing
1. WebSession is a corvenienceclasswhich providestwo methodsfor writing to a
TCPconnectionThestandardPage methodis interesting At aminimumit writes
a standardpageheaderandfooter If calledwith a block, however, it insertsthe value
returnedoy thatblockasthe pagebody. Thiskind of wrappingfunctionalityis anatural
usefor Ruby’s blocks.

The WebServer classusesRuby’s TCP library to acceptincoming connectionn
a given port. For eachconnectionit spavns a Ruby thread,which readsthe header
and writes the contentsbackto the client. The codein the threadis wrappedin a
begin /end block,usedn Rubyto handleexceptions.n thiscaseweuseanensure
clauseto make surethat the connectionto the client is closedeven if we encounter
errorswhile handlingtherequest.

The secondexample packsa numberof featuresinto a small space. At its core, it

representshelist of songsin anMP3 collectionasanarray providing all the existing

arrayfunctionalityplustheability to shufle theentriesrandomly If thearrayis sorted,
thentheentrieswill be orderedby songtitle.

Eachentryin thearrayis anobjectof classSong. As well asproviding a containeffor
thesongtitle, album, andartist, this classmplementghe generatomparisoroperatoy
<=>. This operatoris usedwhensortingcontainersontainingsongs:in this casewe
arrangeo besortedonthe songtitle.

Therearetwo commonapproacheso makingour MP3List actasif it wereanarray:
delegationor subclassingListing 2 shavs the approachusingdelegation. The library
moduledelegate providesaclassSimpleDelegator , which handlesall thede-
tails of forwardingmethodcalls from classMP3List to the delggate. We createthe
arraycontainingthe songstheninvoke SimpleDelegator ’sinitialize method(us-
ing super(songlist)) to setup the delegation.Fromthatpointon, our MP3List
will actasif it wereanarray Whenthe usershuflesa songlist,we createa new array
containingthe entriesof the original in a randomorder, and use SimpleDelega-

tor 's__setobj __methodto delgyateto thatnew array

Listing 3 shaws analternative implementatiorof MP3List in which we subclasshe
builtin Array classandaddour own shuffle! method.Why theexclamationmark?
Ruby conventionis to appenda “!” to methodgthatchangetheir object(or areother
wise dangerous)andto appenda questiormarkto predicatemethodnames.

Conclusion

Programmingn Rubyis animmenselysatisfyingexperience—thdanguageseemso
be ableto represenhigh-level conceptsconcisely efficiently, andreadably It's easy

Resources

Web sites. The official Ruby Home Page is http://www.
ruby- lang.org . You can also find Ruby information at
http://www.rubycentral.com . In particular, you'll find
complete online references to Ruby’s built-in classes and
modules at www.rubycentral.com/ref/ , and to the Ruby
FAQ at www.rubycentral.com/fag/

Download. The latest version of Ruby can be downloaded from:
http://www.ruby- lang.org/en/downloa d.htm | . Mir-
ror sites are:

o ftp://ftp. TokyoNet.AD.JP/pub/misc/ruby
ftp://ftp.iij.ad.jp/pub/lang/ruby
ftp://blade.nagaokaut.ac.jp/pub/lang/r uby
ftp://ftp.krnet.ne.jp/pub/ruby
ftp://mirror.nucba.ac.jp/mirror/ruby
http://mirror.nucba.ac.jp/mirror/ruby

Usenet. Ruby has its own newsgroup, comp.lang.ruby . Traffic on
this group is archived and mirrored to the ruby-talk mailing

list.
Mailing lists. For information on subscribing to ruby-talk , the
English-language mailing list, see http://www.ruby- lang.

org/en/ml.html

to learn,andatthe sametime it is deepenoughto excite eventhe mostjadedlanguage
collector Downloada copy andtry it for yourself.We think you'll likeit.

class Song
def initialize(title)
@title = title
end
def to s
@title
end
end
aSong = Song.new("My Way")

examplel: A simpleclassdefinition

class KaraokeSong < Song
def initialize(title, lyric)
super(title)
@lyric = lyric
end
def to _s
super + " [#@lyric]"
end
end

example2: A subclasof classSong

class Song

..
def title # attribute reader
@title # returns instance variable
end
def title=(title) # attribute setter
@title = title
end
end

example3: Writing your own attributemethods

class Song

..

attr _accessor title
end

example4: Rubyshortcutfor attribute methods

def fibUpTo(max)
ni,, n2 =1, 1
while nl <= max
yield nl # invoke block value
nl, n2 = n2, nl+n2 # and calculate next
end
end

exampleb: Iteratorfor Fibonaccinumbers

fibUpTo(1000) { [term| print term, " " }
Eroduces:
1235813 21 34 55 89 144 233 377 610 987

example6: UsingthefibUpTo iterator

class LinkedList
..
def each
node = head
while node
yield node
node = node.next
end
end
end

example7: Iteratorfor alinkedlist

module Enumerable
def find
each {|val| return val if yield(val) }
end
end

class Array
include Enumerable
end

example8: Adding functionalitywith a mixin

10

require "socket"
class WebSession
def initialize(connection)

@connection = connection
end
def write(string)
@connection.write string
end

def standardPage(title)
write "HTTP/1.1 200 OK\rn\n"
write "Content-Type: text/htmi\r\n\r\n"

write "<html><head> <title># {title }</title> </head>\n"

write yield if block _given?
write "</body></htmI>"
end
end
class WebServer
def initialize(port)
@listen = TCPServer.new(localhost’, port ||
end
def run
loop do
Thread.start(@listen.accept) do |aConnection|
begin
session WebSession.new(aConnection)
request 1
loop do
line = aConnection.gets.chomp("\r\n")
break if line.length =0
request << line
end
session.standardPage("Your Request”) {
"<hl>Your request was:</h1>\n" +
request.join(’
") +
"<p>Thank you for testing our system."

}

ensure
aConnection.close
end # begin
end # Thread
end # loop
end
end
WebServer.new(ARGV[0]).run

listing 1: SimpleWeb Sener

11

8080);

require ’'delegate’
require ‘find’
class Song
attr _reader title, :album, :artist
def initialize(filename)
@artist, @album, @title = filename.split("/")[-3..-1]
@title.chomp!(".mp3")
end
def <=>(anOther)
title <=> anOther.title

end
def to _s
“# {@title } #{@artist }--'# {@album}\n"
end
end

class MP3List < SimpleDelegator
def initialize(base)

songlist = Array.new
Find.find(base) do |entry|
if entry =" A.mp3$/

if Iblock _given? or vyield entry
songlist << Song.new(entry)

end
end
end
super(songlist)
end
def shuffle!
newlist = Array.new
length.times do
newlist << delete _at(rand(length))
end
_setobj __(newlist)
self
end
end
base = ARGV[0] || "/mp3"
list = MP3List.new(base + "/Hatfield And The North")
puts "Original: " list.sort
puts "Shuffled: " list.shuffle!
puts "5 entries: " list[0..4]
puts "Filtered: "
list = MP3List.new(base) { X x =" /Woke Up This Morning/ }
puts list

listing 2: MP3File Lister With Delegation

12

class MP3List < Array
def initialize(base)

super()
Find.find(base) do |entry|
if entry =" A.mp3$/

if Iblock _given? or vyield entry
self << Song.new(entry)
end
end
end
end
def shuffle!
newlist = Array.new
length.times do
newlist << delete _at(rand(length))
end
replace(newlist)
end
end

listing 3: MP3 File Lister asArray Subclass

13

