
Programmingin Ruby

DaveThomas Andy Hunt1

September13,2000

1Dave andAndy areauthorsof ProgrammingRubyandThePragmaticProgrammer, both
from Addison-Wesley. They run an independentconsultancy from offices in Dallas,TX and
Raleigh,NC. Contactthemvia www.pragmaticprogrammer.com

Take the pureobject-orientationof Smalltalk,but remove the quirky syntaxand the
relianceon a workspace.Add in the convenienceandpower of Perl, but without all
thespecialcasesandmagicconversions.Wrapit up in a cleansyntaxbasedin partof
Eiffel, andadda few conceptsfrom Scheme,CLU, Sather, andCommonLisp. You
endup with Ruby, a languagethat is alreadymorepopularthanPythonin its native
Japan.

Rubyis apure,untyped,object-orientedlanguage—justabouteverythingin Rubyis an
object,andobjectreferencesarenot typed. Peoplewho enjoy exploring differentOO
programmingparadigmswill enjoy experimentingwith Ruby: it hasa full metaclass
model,iterators,closures,reflection,andsupportstheruntimeextensionof bothclasses
andindividualobjects.

Ruby is beingusedworld-wide for text processing,XML andwebapplications,GUI
building, in middle-tierservers,andgeneralsystemadministration.Ruby is usedin
artificial intelligenceandmachine-learningresearch,andasanenginefor exploratory
mathematics.

Ruby’ssimplesyntaxandtransparentsemanticsmakeit easyto learn.Its directexecu-
tion modelanddynamictyping let you developcodeincrementally:you cantypically
adda featureand then try it immediately, with no needfor scaffolding code. Ruby
programsaretypically moreconcisethantheir Perl or Pythoncounterparts,andtheir
simplicity makesthemeasierto understandandmaintain.Whenyou bumpup against
somefacility that Ruby is lacking, you’ll find it easyto write Ruby extensions,both
usingRubyandby usinglow level C codethataddsnew featuresto thelanguage.

We cameacrossRuby whenwe werelooking for a languageto useasa prototyping
andspecificationtool. We’ve usedit on all of our projectssince.We have Rubycode
performingdistributedlogging,executingwithin anX/Windowswindow manager, pre-
compilingthetext of a book,andgeneratingindexes.Rubyhasbecomeour language
of choice.

This article looks at just a few of the interestingandinnovative featuresof the Ruby
language.

Everything’s An Object

Everythingyou manipulatein Ruby is an object,andall methodsare invoked in the
context of anobject.Let’s look at severalexamples.

"gin joint".length � 9
"Rick".index("c") � 2
-1942.abs

�
1942

sam.play(aSong) � "duh dum, da dum de dum ..."

In RubyandSmalltalkjargon,all methodcallsareactuallymessagessentto anobject.
Here,thethingbeforetheperiodis calledthereceiver, andthenameaftertheperiodis
themethodto beinvoked.

1

Thefirst exampleasksa string for its length,andthesecondasksa differentstring to
find theindex of theletter“c.” Thethird line hasanumbercalculateits absolutevalue.
Finally, we asktheobject“sam” to playusasong.

It’s worth notinga majordifferencebetweenRubyandmostotherlanguages.In (say)
Java,you’d find theabsolutevalueof somenumberby calling a separatefunctionand
passingin thatnumber. In Ruby, theability to determineabsolutevaluesis built into
numbers—they take careof thedetailsinternally. You simply sendthemessageabs
to a numberobjectandlet it do thework.

number = Math.abs(number) // Java
number = number.abs // Ruby

The sameappliesto all Ruby objects: in C you’d write strlen(name) , while in
Rubyit’s name.length , andsoon. This is partof whatwe meanwhenwe saythat
Rubyis agenuineOOlanguage.

And onelast thing (for now) on calling methods:the parenthesesareoptionalunless
theresultwould beambiguous.This is a big win for parameterlessmethods,asit cuts
down on thecluttergeneratedby all those() pairs.

Classes and Methods

As example 1 shows, Ruby classdefinitions are remarkablysimple: the keyword
class followed by a classname,the classbody, and the keyword end to finish it
all off. Rubyfeaturessingleinheritance:everyclasshasexactlyonesuperclass,which
canbespecifiedasshown in example2. A classwith noexplicit parentis madeachild
of classObject –theroot of theclasshierarchy, andis the only classwith no super-
class. If you’re worried that a singleinheritancemodel just isn’t enough,never fear.
We’ll betalking aboutRuby’smixin capabilitiesshortly.

Let’s get backto the definition of classSong in example1. The classcontainstwo
methoddefinitions,initialize andto s . The initialize methodparticipates
in objectconstruction.To createa Rubyobject,you sendthemessagenew to theob-
ject’s class,asshown in the last line of the example. This new messageallocatesan
empty, uninitializedobject,andthensendsthemessageinitialize to thatobject,
passingalongany parametersthat wereoriginally given to new. This makes ini-
tialize roughlyequivalentto constructorsin C++ andJava.

OurclassSong alsocontainsthedefinitionof themethodto s . This is aconvenience
method.Rubysendsto s to anobjectwhenever it needsto representthatobjectasa
string. By overridingthedefault implementationof to s (which is in classObject)
we get to control how our objectsareprinted,for exampleby tracingstatementsand
thedebugger, andwheninterpolatedin strings.

In example2, we createa subclassof classSong, overridingboththe initialize
andto s methods.In bothof thenew methodswe usethesuper keyword to invoke

2

theequivalentmethodin ourparentclass.In Ruby, super is notareferenceto aparent
class;insteadit is anexecutablestatementthatreinvokesthecurrentmethod,skipping
any definitionin theclassof thecurrentobject.

Attributes, Instance Variables, and Bertrand Meyer

The initialize methodin classSong containstheline

@title = title

Namesthatstartwith single“at” signs(@) areinstancevariables—variablesthatare
specificto a particularinstanceor objectof a class. In our case,eachSong object
hasits own title, so it makessenseto have that title be an instancevariable. Unlike
languagessuchasJava andC++, you don’t have to declareyour instancevariablesin
Ruby;they springinto existencethefirst time to referencethem.

Another differencebetweenRuby and Java/C++ is that you may not export an ob-
ject’s instancevariables;they areavailableto subclasses,but areotherwiseinaccessi-
ble. (This is roughly equivalentto Java’s protected concept). Instead,Ruby has
attributes: methodsthatget andsetthe stateof an object. You caneitherwrite these
attributemethodsyourself,asshown in example3, or usethehandy-dandyRubyshort-
cutsin example4.

It’s interestingto notethemethodcalledtitle= in example3. Theequalssigntells
Ruby that this methodcanbe assignedto—it canappearon the left-handsideof an
assignmentstatement.If youwereto write

aSong.title = "Chicago"

Rubytranslatesit into acall to thetitle= method,passing“Chicago”asaparameter.

This mayseemlike sometrivial syntacticsugar, but it’s actuallya fairly profoundfea-
ture. You cannow write classeswhoseattributesactasif they werevariables,but are
actuallymethodcalls.This decouplestheusersof your classfrom its implementation:
you’re free to changean attribute back and forth betweensomealgorithmic imple-
mentationanda simpleinstancevariable. In his landmarkObject-OrientedSoftware
Construction, BertrandMeyercallsthis the“Uniform AccessPrinciple.”

Blocks and Iterators

Have you ever wantedto write your own control structures,or packageup lumpsof
codewithin objects?Ruby’sblockconstructletsyou do just that.

A block is simply achunkof codebetweenbraces,or betweendo andend keywords.
WhenRubycomesacrossa block, it storestheblock’s codeaway for later; theblock

3

is not executed.In this way, a block is similar to ananonymousmethod.Blockscan
only appearin Rubysourcealongsidemethodcalls.

A block associatedwith a methodcall canbe invokedfrom within thatmethod.This
soundsinnocuous,but this singlefacility letsyouwrite callbacksandadaptors,handle
transactions,andimplementyourown iterators.Blocksarealsotrueclosures,remem-
bering the context in which they weredefined,even if that context hasgoneout of
scope.Let’s just look at blocksasiteratorsfor now.

The methodin example5 implementsan iterator that returnssuccessive Fibonacci
numbers(theseriesthatstartswith two 1’s,andwhereeachtermis thesumof thetwo
precedingterms). Themainbodyof themethodis a loop thatcalculatesthe termsof
theseries.Thefirst line in the loop containsthe keyword yield , which invokesthe
blockassociatedwith themethod,in thiscasepassingasaparameterthenext Fibonacci
number. Whentheblock returns,themethodcontainingtheyield resumes.Thusin
our Fibonacciexample,the block will be invokedoncefor eachnumberin the series
until somemaximumis reached.

Example6 shows this in action. Thecall to fibUpTo hasa block associatedwith it
(thecodebetweenthebraces).Thisblocktakesasingleparameter—thenamebetween
theverticalbarsat thestartof theblock is like a method’sparameterlist. Thebodyof
theblocksimply printsthis value.

If youwrite yourown collectionclasses(or any classesthatcontainastreamof values)
you canbenefitfrom therealbeautyof Ruby’s iterators.Sayyou’veproduceda class
thatstoresobjectsin a singly-linkedlist. Themethodeach shown in example7 tra-
versesthis list, invokingablock for eachnode.This is aVisitor Patternin a threelines
of code.

Thechoiceof thename,each , wasnot arbitrary. If your classimplementsaneach
method,thenyou canget a whole setof othercollection-orientedmethodsfor free,
thanksto theEnumerable mixin.

Modules, Mixins, and Multiple Inheritance

Modulesare classesthat you can’t instantiate:you can’t usenew to createobjects
from them,andthey can’t havesuperclasses.At first, they mightseempointless,but in
reality moduleshavetwo majoruses.

� Modulesprovide namespaces.Constantsandclassmethodsmaybeplacedin a
modulewithoutworryingabouttheirnamesconflictingwith constantsandmeth-
odsin othermodules.This is similar to the ideaof putting staticmethodsand
variablesin a Java class. In both Java andRuby you can write Math.PI to
accessthe valueof � (althoughin Ruby, PI is a constant,ratherthana final
variable,andyou’remorelikely to seethenotationMath::PI).

4

Blocks and Closures

A Ruby block can be converted into an object of class Proc . These
Proc objects can be stored in variables and passed between meth-
ods just like any other object. The code in the corresponding block
can be executed at any time by sending the Proc object the message
call .

Ruby Proc objects remember the context in which they were created:
the local variables, the current object and so on. When called, they
recreate this context for the duration of their execution, even if that
context has gone out of scope. Other languages call proc objects
closures.

The following method returns a Proc object.

def times(n)
return Proc.new

�
|val| n * val �

end

The block multiplies the method’s parameter, “n”, by another value,
which is passed to the block as a parameter. The following code
shows this in action.
double = times(2)
double.call(4) � 8
santa = times("Ho! ")
santa.call(3)

�
"Ho! Ho! Ho! "

Even though the parameter “n” is out of scope when the double and
santa objects are called, its value is still available to the closures.

� Modulesalsoarethe basisfor mixins, a mechanismby which you addcanned
behavior to yourclasses.

Perhapstheeasiestway to think aboutmixins is to imaginethatyou couldwrite code
in aJavainterface.Any classthatimplementedsuchaninterfacewouldreceivenot just
a typesignature;it would receivethecodethatimplementedthatsignatureaswell. We
caninvestigatethis by looking at the Enumerable module,which addscollection-
basedmethodsto classesthatimplementthemethodeach .

Enumerable implementsthe methodfind (amongothers). find returnsthe first
memberof a collectionthatmeetssomecriteria. This exampleshows find in action,
looking for thefirst elementin anarraythatis greaterthatfour.

[1,3,5,7,9].find
�
|i| i > 4 � �

5

ClassArray doesnot implementthe find method. Instead,it mixesin Enumer-
able , whichimplementsfind in termsof Array ’seach method.Example8 shows

5

how this might bedone.Contrastthis approachwith bothJava andC#, whereit is up
to theclassimplementingthecollectionto alsoprovidea considerableamountof sup-
portingscaffolding.

Although a classmay have only one parentclass(the single inheritancemodel), it
maymix in any numberof modules.Thiseffectively givesRubythepowerof multiple
inheritancewithoutsomeof theambiguitiesthatcanarise.(And in caseswheremixing
in moduleswould causeanameclash,RubysupportsEiffel-stylemethodrenaming.)

Other good stuff

This article is too short to do justiceto all of Ruby. However, let’s briefly touchon
someadditionalhighlights.

� Classesandmodulesare never closed. You canaddto andalterall classesand
modules(includingthosebuilt in to Rubyitself).

� Reflection. As well assupportingreflectioninto bothclassesandindividual ob-
jects,Rubyletsyou traversethelist of currentlyactiveobjects.

� Marshalling. Rubyobjectscanbeserializedanddeserialized,allowing themto
be saved externally andtransmittedacrossnetworks. A full distributedobject
system,DRb, is written in about200linesof Rubycode.

� Libraries. Ruby hasa large (and growing) collection of libraries. All major
Internetprotocolsaresupported,asaremostmajordatabases.ExtendingRuby
is simplecomparedwith (say)Perl.

� Threads. Rubyhasbuilt-in supportfor threads,anddoesn’t rely on theunderly-
ing operatingsystemfor threadsupport.

� Objectspecialization. Youcanaddmethodsto individualobjects,notjustclasses.
This canbeusefulwhendefiningspecializedbehavior for objects(for example,
determininghow they respondto GUI events).

� Exceptions. Rubyhasa fully object-oriented,extensibleexceptionmodel.
� Garbage collection. Ruby objectsareautomaticallygarbagecollectedusinga

mark-and-sweepalgorithm.As well assimplifying programming,thechoiceor
mark andsweepmakeswriting extensionseasier(no referencecountingprob-
lems).

� Activedevelopercommunity. TheRubydevelopmentcommunityis still abazaar,
small, intimate,andbustling. Changesarediscussedopenlyandaremadeeffi-
ciently. You canhaveanimpacton Ruby.

6

Some Real Examples

We finish off by looking at two largerRubyprograms.Thefirst is a basicwebserver
that echoesbackthe headersit receives. It’s written astwo classes,shown in listing
1. WebSession is a convenienceclasswhich providestwo methodsfor writing to a
TCPconnection.ThestandardPage methodis interesting.At aminimumit writes
a standardpageheaderandfooter. If calledwith a block, however, it insertsthevalue
returnedby thatblockasthepagebody. Thiskind of wrappingfunctionalityis anatural
usefor Ruby’sblocks.

The WebServer classusesRuby’s TCP library to acceptincomingconnectionson
a given port. For eachconnectionit spawns a Ruby thread,which readsthe header
and writes the contentsback to the client. The codein the threadis wrappedin a
begin /end block,usedin Rubyto handleexceptions.In thiscase,weuseanensure
clauseto make surethat the connectionto the client is closedeven if we encounter
errorswhile handlingtherequest.

The secondexamplepacksa numberof featuresinto a small space. At its core, it
representsthelist of songsin anMP3 collectionasanarray, providing all theexisting
arrayfunctionalityplustheability to shuffle theentriesrandomly. If thearrayis sorted,
thentheentrieswill beorderedby songtitle.

Eachentryin thearrayis anobjectof classSong. As well asproviding acontainerfor
thesongtitle, album,andartist,thisclassimplementsthegeneralcomparisonoperator,
<=>. This operatoris usedwhensortingcontainerscontainingsongs:in this casewe
arrangeto besortedon thesongtitle.

Therearetwo commonapproachesto makingourMP3List actasif it wereanarray:
delegationor subclassing.Listing 2 shows theapproachusingdelegation.Thelibrary
moduledelegate providesa classSimpleDelegator , which handlesall thede-
tails of forwardingmethodcalls from classMP3List to the delegate. We createthe
arraycontainingthesongs,theninvokeSimpleDelegator ’s initialize method(us-
ing super(songlist)) to setupthedelegation.Fromthatpointon,ourMP3List
will actasif it wereanarray. Whentheusershufflesa songlist,we createa new array
containingthe entriesof the original in a randomorder, anduseSimpleDelega-
tor ’s setobj methodto delegateto thatnew array.

Listing 3 shows analternative implementationof MP3List in which we subclassthe
builtin Array classandaddourownshuffle! method.Why theexclamationmark?
Rubyconventionis to appenda “!” to methodsthatchangetheir object(or areother-
wisedangerous),andto appendaquestionmarkto predicatemethodnames.

Conclusion

Programmingin Rubyis an immenselysatisfyingexperience—thelanguageseemsto
be ableto representhigh-level conceptsconcisely, efficiently, andreadably. It’s easy

7

Resources

Web sites. The official Ruby Home Page is http://www.
ruby- lang.org . You can also find Ruby information at
http://www.rubycentral.com . In particular, you’ll find
complete online references to Ruby’s built-in classes and
modules at www.rubycentral.com/ref/ , and to the Ruby
FAQ at www.rubycentral.com/faq/ .

Download. The latest version of Ruby can be downloaded from:
http://www.ruby- lang.org/en/downloa d.htm l . Mir-
ror sites are:

� ftp://ftp.TokyoNet.AD.JP/pub/misc/ruby� ftp://ftp.iij.ad.jp/pub/lang/ruby� ftp://blade.nagaokaut.ac.jp/pub/lang/r uby� ftp://ftp.krnet.ne.jp/pub/ruby� ftp://mirror.nucba.ac.jp/mirror/ruby� http://mirror.nucba.ac.jp/mirror/ruby

Usenet. Ruby has its own newsgroup, comp.lang.ruby . Traffic on
this group is archived and mirrored to the ruby-talk mailing
list.

Mailing lists. For information on subscribing to ruby-talk , the
English-language mailing list, see http://www.ruby- lang.
org/en/ml.html .

to learn,andat thesametime it is deepenoughto exciteeventhemostjadedlanguage
collector. Downloadacopy andtry it for yourself.We think you’ll like it.

8

class Song
def initialize(title)

@title = title
end
def to s

@title
end

end
aSong = Song.new("My Way")

example1: A simpleclassdefinition

class KaraokeSong < Song
def initialize(title, lyric)

super(title)
@lyric = lyric

end
def to s

super + " [#@lyric]"
end

end

example2: A subclassof classSong

class Song
...
def title # attribute reader

@title # returns instance variable
end
def title=(title) # attribute setter

@title = title
end

end

example3: Writing yourown attributemethods

class Song
...
attr accessor :title

end

example4: Rubyshortcutfor attributemethods

def fibUpTo(max)
n1, n2 = 1, 1
while n1 <= max

yield n1 # invoke block value
n1, n2 = n2, n1+n2 # and calculate next

end
end

example5: Iteratorfor Fibonaccinumbers

9

fibUpTo(1000)
�

|term| print term, " " �
produces:
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987

example6: UsingthefibUpTo iterator

class LinkedList
...
def each

node = head
while node

yield node
node = node.next

end
end

end

example7: Iteratorfor a linkedlist

module Enumerable
def find

each
�
|val| return val if yield(val) �

end
end

class Array
include Enumerable

end

example8: Adding functionalitywith a mixin

10

require "socket"
class WebSession

def initialize(connection)
@connection = connection

end
def write(string)

@connection.write string
end
def standardPage(title)

write "HTTP/1.1 200 OK\r\n"
write "Content-Type: text/html\r\n\r\n"
write "<html><head> <title>#

�
title � </title> </head>\n"

write yield if block given?
write "</body></html>"

end
end
class WebServer

def initialize(port)
@listen = TCPServer.new(’localhost’, port || 8080);

end
def run

loop do
Thread.start(@listen.accept) do |aConnection|

begin
session = WebSession.new(aConnection)
request = []
loop do

line = aConnection.gets.chomp("\r\n")
break if line.length == 0
request << line

end
session.standardPage("Your Request")

�
"<h1>Your request was:</h1>\n" +
request.join(’
’) +
"<p>Thank you for testing our system."

�
ensure

aConnection.close
end # begin

end # Thread
end # loop

end
end
WebServer.new(ARGV[0]).run

listing 1: SimpleWebServer

11

require ’delegate’
require ’find’
class Song

attr reader :title, :album, :artist
def initialize(filename)

@artist, @album, @title = filename.split("/")[-3..-1]
@title.chomp!(".mp3")

end
def <=>(anOther)

title <=> anOther.title
end
def to s

"’#
�
@title � ’ #

�
@artist � --’#

�
@album� ’\n"

end
end
class MP3List < SimpleDelegator

def initialize(base)
songlist = Array.new
Find.find(base) do |entry|

if entry =˜ /\.mp3$/
if !block given? or yield entry

songlist << Song.new(entry)
end

end
end
super(songlist)

end
def shuffle!

newlist = Array.new
length.times do

newlist << delete at(rand(length))
end

setobj (newlist)
self

end
end
base = ARGV[0] || "/mp3"
list = MP3List.new(base + "/Hatfield And The North")
puts "Original: ", list.sort
puts "Shuffled: ", list.shuffle!
puts "5 entries: ", list[0..4]
puts "Filtered: "
list = MP3List.new(base)

�
|x| x =˜ /Woke Up This Morning/ �

puts list

listing 2: MP3File ListerWith Delegation

12

class MP3List < Array
def initialize(base)

super()
Find.find(base) do |entry|

if entry =˜ /\.mp3$/
if !block given? or yield entry

self << Song.new(entry)
end

end
end

end
def shuffle!

newlist = Array.new
length.times do

newlist << delete at(rand(length))
end
replace(newlist)

end
end

listing 3: MP3 File ListerasArray Subclass

13

