
0 7 4 0 - 7 4 5 9 / 0 3 / $ 1 7 . 0 0 © 2 0 0 3 I E E E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y I E E E S O F T W A R E 9 7

software construction
E d i t o r s : A n d y H u n t a n d D a v e T h o m a s ■ T h e P r a g m a t i c P r o g r a m m e r s
a n d y @ p r a g m a t i c p r o g r a m m e r. c o m ■ d a v e @ p r a g m a t i c p r o g r a m m e r. c o m

A
ny construction project begins with raw
material, and as Confucius suggests, the
nature of the raw material is critical to
success—so much so that you shouldn’t
even begin if the “wood” is poor. Even if
you have sharp, finely honed tools, your

project will still fail if the raw material isn’t
sound.

And what, might you ask, is the raw mate-
rial of software development?

Us.
People. We are the only raw material of con-

sequence in software development. Oh sure, the
process will involve a few keyboards and mice,
some compilers, database products, and myriad
office supplies, but they’re all completely sec-
ondary. Contrary to popular myth, we don’t
write software on computers. We don’t write
software in programming languages, integrated
development environments or case tools, white-
boards, or 3 × 5 cards.

We write software in our heads.

It’s all in your head
Ideas, plans, requirements, domain expertise,

and all those other pesky little memes somehow

get into our heads and ferment into a vision that
we jointly and individually express as working
software. Here, the construction analogy breaks
down a bit, because we are not only the raw ma-
terial but most of the manufacturing process as
well. Technology offers some help, but make no
mistake: the playing field is in our own heads.
We are the raw material—our attitudes, abilities,
capabilities, and even emotional states.

So how do we prepare this material? Obvi-
ously, we don’t want it to be “rotten,” but
how can we tell? How can we tell if hidden
voids lurk beneath the surface, just waiting to
ruin the project once we start carving?

When you lack the right material, you’ll
keenly feel its absence. For example, warning
signs might include

■ The developer who only uses one favorite
solution for every problem

■ Folks who don’t learn from mistakes—or
worse, are too afraid to make any

■ The developer who can’t be bothered to tell
anyone what he’s doing or why

Fortunately, unlike real wood, we can repair
our personal wood if the spirit is willing.

Dave and I think you’ll always find certain
qualities in the best raw material. Moreover, you
can learn, expand, and improve all of them in
yourself and help your teammates do the same.

Good developers ...

Have a pragmatic outlook
The best solution is the one that works well

for the particular problem at hand, in a timely
and cost-effective manner. No two software pro-
jects are ever alike: just because a technique or

Preparing the Raw Material
Andy Hunt and Dave Thomas

Rotten wood cannot be carved, nor are dung walls plastered. —Confucius

9 8 I E E E S O F T W A R E h t t p : / / c o m p u t e r. o r g / s o f t w a r e

SOFTWARE CONSTRUCTION

product worked well once, you can’t
guarantee it will work as well again in a
different context. The pragmatic razor is
simple: it’s only working if it’s working.

The best solution doesn’t come from
the “reading edge” of a textbook, course,
or magazine. Those offer a good start but
no feedback. Applying feedback is critical
to pragmatism. It’s the only way to know
if you’re on the right track—the only way
to know whether “it’s working” or not.

Feedback comes from hands-on ex-
perience: from getting your hands dirty,
trying your idea out under actual con-
ditions, and filing away the results. It
also helps to be a pack rat for little
facts, ranging from how to implement
symbolic links to knowing the best time
of day to ask an end user a question.

See multiple perspectives
Always look beyond the immediate

problem and try to place it in its larger
context; try to be aware of the bigger
picture. After all, without the big pic-
ture, how can you be pragmatic? How
can you make intelligent compromises
and informed decisions?

The real world is not a rational, ele-
gantly modeled, context-free place. It’s
messy, filled with ambiguity, uncer-
tainty, and of course, context—a criti-
cal element we often taken for granted.

For example, consider the word bach-
elor. Merriam-Webster’s marriage-related
definition for this says “an unmarried
man.” But to most people, it means a lot
more than that—the Pope is an unmar-
ried man, but few would call him a bach-
elor. Nor do we use the term for someone
involved in a long-term unmarried rela-
tionship, even though it’s technically ap-
propriate. The word’s social context gives
it its real meaning, which is closer to “an
unmarried man of eligible age and cir-
cumstances who is not yet married but
should be.” Boy, there’s a lot of context
there. Put this same word in a different
language or cultural context and you’ll
open a whole ’nother can of worms.

Part of seeing multiple perspectives
is fully appreciating the business con-
text in which programmers operate.
Cool technology has its own rewards,
but delivering business value is what

keeps you employed or keeps clients
coming back. Delivering software that
works and works well in a business
context is key to a sustainable career.

Take responsibility
Painful as it is to admit it, for most

people, most of the time, the problems
that come up are our own fault—not the
compiler’s, not the OS’s, not the database
vendor’s, not our bosses’, and not our
coworkers’. Yet many people and teams,
when facing a disastrous problem, first
embark on a search (aka witch-hunt) to
fix the blame.

It goes somewhat against human na-
ture, but you should always try to fix
the problem, not the blame. Remem-
ber, we all write software in our heads,
so it makes sense to go ahead and take
responsibility for it. “The cat ate my
source code” just doesn’t cut it anymore—
when problems come up, we need to
invent options, not excuses.

Communicate well
Programmers are information hubs.

We communicate with everyone and
everything, from customers, end users,
and teammates to the machine itself.
John Donne’s pithy “No man is an is-
land” holds especially true for software
developers. We must communicate well
for effective results.

The isolated, lone developer huddled
over a terminal with a can of highly caf-
feinated cola offers not only an inaccu-
rate and misleading stereotype but a
dangerous one as well. Isolated devel-
opers can inadvertently duplicate other
teammates’ work, use outdated or inap-
propriate methods, and even build the
wrong product—at least, not the prod-
uct the sponsor wanted.

Instead of taking more Java and
UML courses, we should work on our
technical writing, public speaking, and
group facilitation.

A CPU with no I/O isn’t very use-
ful. Neither is a developer who can’t
communicate.

Learn continuously
On a par with communication is con-

tinuous learning, which means learning

about more than just the technology in-
volved. The technology alone poses a
huge challenge; it’s like taking a sip from
the proverbial fire hose. But the need for
learning extends to the problem domain,
about how the team works together (or
how it doesn’t), and about ourselves.

Learning continuously about ourselves
is harder than it sounds; at first, most
people aren’t comfortable constantly cri-
tiquing and appraising their own work.
But of course, you need to do exactly that
to improve or even to just keep up. It
doesn’t happen overnight or by accident.
You have to deliberately, consciously plan
to learn, apply feedback, and improve to
remain competitive.

S o, what does this have to do with
software construction? Everything!
An investment in preparing the raw

material is always repaid. Because just
as in real construction, any problems in
the raw material will become problems
in the project. If you unknowingly build
using rotten wood or on unprepared
ground, the cost of going back and mak-
ing repairs can be astronomically high.

You might find workarounds for the
smaller problems—paint or patch the
rotten spot, or use it where it’s not struc-
turally critical. But you have to know a
problem exists before you can work
around it.

Unfortunately many of these quali-
ties are hard to measure directly. We
don’t have certification programs in
pragmatism or responsibility, for in-
stance. But that’s okay, because de-
grees, certifications, titles, and the lot
aren’t reliable indicators of developer
performance—of the raw material’s
quality. Only one thing is, as Confucius
reminds us (emphasis added):

In my first dealings with men, I
hearkened to their words, and took
their deeds on trust. Now, in deal-
ing with men, I hearken to their
words, and watch their deeds.

Andy Hunt and Dave Thomas, The Pragmatic Pro-
grammers, develop complex software systems for clients and of-
fer pragmatic resources for developers and managers. Contact
them via www.pragmaticprogrammer.com.

