SOWare construction

Editors: Dave Thomas and Andy Hunt m The Pragmatic Programmers
dave@pragmaticprogrammer.com andy@pragmaticprogrammer.com

Andy Hunt and Dave Thomas

e receive email from our readers company spent over $200,000 on services,
every day. Much of it relates their $100,000 on legal fees because of the poor
experiences in the field and how quality of those services, and more than a
our writings apply. Every now and quarter-million on penalties because they still
then we get a letter that really didn’t have the software completed.
makes us stop and think. Pete looked at the project’s requirements
I had posted a story on my blog about my and thought they were pretty straightfor-
young son’s invention of the word imaginate: ~ ward. So, he asked if could have a go at it.
The client was necessarily skeptical, but she
imaginate: (v) to instantiate into reality — agreed to sit down with him and give it a try.
by pure will of imagination Pete describes what happened next, using his
home-brew application development system:

I “plugged in” one of the data structures
that had been outlined in the RFP,
pressed the “Go” button, and let the
system do its work. A few seconds later,
the client was entering some test data
into the scheduling screen. Her com-
ments: “This is simply amazing. Do you
mean that 1 can imaginate like this
whenever I think of something I want to
try?” We both had a good laugh at her
reaction. She went out and brought the

A few weeks after I posted that, I received a whole department in to see the “system”
letter from a fellow named Pete (I'll leave off she was designing “come to life” before
his last name to give him a shred of privacy). her very eyes. The end result was that [
Pete told me about a system he’d written that got the assignment, it was completed in
helped him rapidly create and deploy code for about three weeks, and they saved quite
his clients and how it hinged on that word, a bit of money.

“imaginate.”
It seems he had this one client that had al- By now Pete had my attention. What a

ready suffered two failed attempts at this par- wonderful example of agile development! He
ticular project. Each attempt was bid at over had the ability to sit down with the user and
US$300,000 and estimated to take anywhere create the software in real time. This is some-
from three to four months. Between them, the thing we’ve always aimed for and looked to-

96 IEEE SOFTWARE Published by the IEEE Computer Society 0740-7459/04/$20.00 © 2004 IEEE

SOFTWARE CONSTRUCTION

ward frameworks such as Naked Ob-
jects, new IDEs (integrated develop-
ment environments), or new languages
such as Ruby to help get us there.

So, I asked Pete about this mar-
velous technology he’d developed.
What was it written in? Would he con-
sider making it available as an open
source project?

Imagine my surprise when Pete told
me it was written in Cobol.

Worse yet, Pete chose Cobol for a
very pragmatic reason: “not because of
any particular bias for the language but
for the additional features that come
with the version I’ve used.” He went on
to say he’d written this system in vari-
ous languages, dating all the way back
to 1973!

Apparently, it doesn’t require the lat-
est technologies to make users happy.

But not all of his clients were as ap-
preciative. In fact, a typical reaction
he gets from IT departments to his
rapid-development approach is “it
can’t be done.” For 30 years, Pete’s
been in there pitching. The users and
sponsors love it, but occasionally the
IT folks say “it can’t be done” and
squash the project, throwing Pete out
the door (hopefully that’s just a figure
of speech).

And of course they’re right, aren’t
they? We, as an industry, love to build
the grand frameworks that can solve
all the world’s problems in one unified
package. With that in hand, you could
in fact just sit down with the user and
bang out a solid, robust application
complete with security, navigation,
user scripting, and so on, coupled with
a repository of proven, debugged ob-
ject prototypes that are customized as
required.

But with all our resources, we
haven’t managed to do that very well
yet. Applications that are thrown to-
gether quickly usually exact a steep
price in the long run, leaving behind a
quicksand-like pile of Visual Basic,
Foxpro, or Perl code that isn’t main-
tainable or extendable at all. And yet
here’s this guy who claims to be able

to build software that lasts and deliv-
ers value, for as long as it’s needed,
and is simple and straightforward to
understand, maintain, enhance, and
extend.

How is that possible?

Many of us get into the business of
programming because we love the tech-
nology. We love listening to the crisp
hum of the compiler as it builds a
world according to our own whims.
That’s great motivation to get into the
business, and it’s probably a good an-
gle if you’re pursuing a research topic,
but it doesn’t cut it when it comes to
programming in a corporate environ-
ment for business users.

Users don’t care whether you use
J2EE, Cobol, or a pair of magic rocks.
They want their credit card authoriza-
tion to process correctly and their in-
ventory reports to print. You help them
discover what they really need and
jointly imagine a system.

Instead of getting carried away
with the difficult race up the cutting
edge of the latest technology, Pete
concentrated on building a system
that works for him and his clients. It’s
simple, perhaps almost primitive by
our lofty standards. But it’s easy to
use, easy to understand, and fast to
deploy. Pete’s framework uses a mix-
ture of technologies: some modeling,
some code generation, some reusable
components, and so on. He applies
the fundamental pragmatic principle
and uses what works, not what’s
merely new or fashionable.

We fail (as an industry) when we try
to come up with the all-singing, all-
dancing applications framework to
end all applications frameworks.
Maybe that’s because there is no
grand, unified theory waiting to
emerge. One of the hallmarks of post-
modernism (which some think is a dis-
tinguishing feature of our times) is that
there’s no “grand narrative,” no over-
arching story to guide us. Instead,
there are lots of little stories.

Pete’s not trying to fix all the
world’s problems, just his.

Lessons learned

So what can we take away from all
this? I think there are a few, very old-
fashioned, very agile ideas in this story:

B Users like results. They don’t care
about the technology. Do you re-
ally care about the polycarbonate
resins used to make your car en-
gine? Or just that you get 80 miles
to the gallon? What fab process
was used to make the chip inside
your cell phone?

B Users like to be involved. What’s it
like to be held hostage to a critical
system that you depend on but into
which you have no input? Try call-
ing up your credit card company
or long-distance provider and nav-
igating their voice mail. Fun, isn’t
it? What would that have looked
like if you’d been involved in its
design?

B Reuse is great, but use is better. Pete
solved recurring problems that pre-
sented themselves—not problems
that might come up, but the ones
that did come up. You don’t need to
solve all the world’s problems; at
least not at first.

B Tools should support rapid develop-
ment with feedback. Our compilers,
IDEs, and development tools need
to support our ability to imaginate:
to create what we want almost as
fast as we can think it.

Unfortunately, our development envi-
ronments are getting larger and larger,
which makes development time—to
say nothing of the learning curve—
longer and longer.

f your tools don’t support interactive

design and rapid development with

the end user or sponsor as an active
participant, then you might as well
scrap them and use Cobol.

Pete did. @

Dave Thomas and Andy Hunt are pariners in
The Pragmatic Programmers and authors of the Jolt Productivity
Award-winning The Pragmatic Starter Kit book series. Contact
them via www.PragmaticProgrammer.com.

September/October 2004 I1EEE SOFTWARE 97

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Coated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003100200046006500620072007500610072007900200032003000300034002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

