
Extracted from:

Seven Mobile Apps in Seven Weeks
Native Apps, Multiple Platforms

This PDF file contains pages extracted from Seven Mobile Apps in Seven Weeks,
published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2016 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Seven Mobile Apps in Seven Weeks
Native Apps, Multiple Platforms

Tony Hillerson

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Jacquelyn Carter (editor)
Potomac Indexing, LLC (index)
Candace Cunningham, Molly McBeath (copyedit)
Gilson Graphics (layout)
Janet Furlow (producer)

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2016 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-148-3
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—July 2016

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Day 2: What Can I Get for a Buck?
Or, Building a Conversion Interface

We’ve got a solid foundation in place for getting data to and from the API.
Now let’s get into building an interface for the app.

Building an Interface
To allow the user to be able to do the conversion of one currency to another,
we’ll need an interface. Android’s interface definition is done mostly in XML,
with sensible layout language and a very powerful system for dealing with
device differences. Let’s start by building a form for the user to specify two
currencies and convert an amount in one to an amount in the other.

Creating a Linear Layout

The activity_convert.xml layout is the view that ConvertActivity manages. Here’s the
first line of input fields for currencies.

Android/android_02_01_simple_phone_ui/CurrencyConverter/app/src/main/res/layout/activity_convert.xml

<TextView
android:id="@+id/currency_label"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="@string/currencies"
/>

<LinearLayout
android:id="@+id/currencies"
android:layout_width="match_parent"
android:layout_height="wrap_content">

<EditText
android:id="@+id/from_currency"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_weight="1.0" />

<EditText
android:id="@+id/to_currency"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_weight="1.0" />

</LinearLayout>

A TextView simply displays text, an EditText is a text field, and a LinearLayout is a
layout container that arranges views on the screen linearly. The ID in each
tag allows the view to be referenced in code, and the @+id/foo syntax creates
a new ID. We’ll see how these IDs are made referenceable in just a bit.

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/7apps/code/Android/android_02_01_simple_phone_ui/CurrencyConverter/app/src/main/res/layout/activity_convert.xml
http://pragprog.com/titles/7apps
http://forums.pragprog.com/forums/7apps

Linear layouts are the most basic type of layout. I generally find myself con-
verting linear layouts to the more powerful RelativeLayout, so keep that in mind
for further research. However, this view will work fine as it is here.

Notice there is another really great feature of the platform in the text attribute
of the TextView tag. Localization and internationalization are built right
in—@string/currencies references a string resource, which you can see in this
string resource file.

Android/android_02_01_simple_phone_ui/CurrencyConverter/app/src/main/res/values/strings.xml

<resources>
<string name="app_name">Currency Converter</string>

<string name="hello_world">Hello world!</string>
<string name="action_settings">Settings</string>
<string name="currencies">Currencies</string>
<string name="amounts">Amounts</string>
<string name="convert">Convert</string>

</resources>

Android resources are important to understand because they’re the method
for dealing with not only localization but also layouts for different screen sizes
and orientations and a lot of device differences and configurations.

Finally, to capture the user’s intention to perform a conversion, we have a
button in the UI.

Android/android_02_01_simple_phone_ui/CurrencyConverter/app/src/main/res/layout/activity_convert.xml

<Button
android:id="@+id/convert_button"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="@string/convert"
/>

Again, note the definition of the ID and the use of the string resource. Here’s
how that UI looks on a large Android version 5.0 phone and on a regular
version 4.2.2 phone.

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/7apps/code/Android/android_02_01_simple_phone_ui/CurrencyConverter/app/src/main/res/values/strings.xml
http://media.pragprog.com/titles/7apps/code/Android/android_02_01_simple_phone_ui/CurrencyConverter/app/src/main/res/layout/activity_convert.xml
http://pragprog.com/titles/7apps
http://forums.pragprog.com/forums/7apps

Now let’s look at how to get a handle on the view in the activity.

Controlling the View from the Activity

A lot of setup happens in onCreate(). For the activity to be able to control the
view, it generally has to first grab on to a bunch of components in the view,
so we’ll do this in onCreate().

Android/android_02_02_edit_text_events/Currency … sevenapps/currencyconverter/ConvertActivity.java

@Override protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_convert);

IntentFilter intentFilter =
new IntentFilter(ConversionService.CONVERSION_RESULT_ACTION);

LocalBroadcastManager.getInstance(this).
registerReceiver(conversionReceiver, intentFilter);

fromCurrencyField = (EditText) findViewById(R.id.from_currency);
toCurrencyField = (EditText) findViewById(R.id.to_currency);
fromAmountField = (EditText) findViewById(R.id.from_amount);
toAmountField = (EditText) findViewById(R.id.to_amount);
convertButton = (Button) findViewById(R.id.convert_button);

fromAmountField.setText("1.00");
toAmountField.setText("1.00");

convertButton.setOnClickListener(new View.OnClickListener() {
@Override public void onClick(View v) {
convert();

}
});

}

• Click HERE to purchase this book now. discuss

Day 2: What Can I Get for a Buck? • 7

http://media.pragprog.com/titles/7apps/code/Android/android_02_02_edit_text_events/Currency � sevenapps/currencyconverter/ConvertActivity.java
http://pragprog.com/titles/7apps
http://forums.pragprog.com/forums/7apps

The method setContentView() takes a layout ID and sets the activity’s view to be
the view described in the layout file. Notice this class, R, which is an autogen-
erated class holding named data about resources, such as layouts. Next, to
wire up variables to components from the layout, we use findViewById(), which
again uses R. The components are now accessible from the variable assign-
ments. Next we set some default values in the amount fields.

Finally, we add a click listener to the conversion button.

The Convert button click handler calls convert(), which checks currenciesChanged()
with some rudimentary caching to see if we need to pull down a rate again.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/7apps
http://forums.pragprog.com/forums/7apps

Android/android_02_02_edit_text_events/Currency … sevenapps/currencyconverter/ConvertActivity.java

private void convert() {
if (currenciesChanged()) {

getRate();
} else {

calculateToAmount();
}

}

private boolean currenciesChanged() {
if (currentRate != null) {

String from = fromCurrencyField.getText().toString().toLowerCase();
String to = toCurrencyField.getText().toString().toLowerCase();
if (from.equals(currentRate.from.toLowerCase()) &&

to.equals(currentRate.to.toLowerCase())) {
return false;

}
}
return true;

}

That caching solution isn’t great, we’ll look deeper at it shortly. If the cached
rate object turns out not to match the currency values, we load a new rate.

Android/android_02_02_edit_text_events/Currency … sevenapps/currencyconverter/ConvertActivity.java

private void getRate() {
String from = fromCurrencyField.getText().toString();
String to = toCurrencyField.getText().toString();
if (from != null && to != null && from.length() == 3 && to.length() == 3) {

getRate(from, to);
}

}

private void getRate(String from, String to) {
Intent convertIntent = new Intent(this, ConversionService.class);
convertIntent.putExtra(ConversionService.FROM, from);
convertIntent.putExtra(ConversionService.TO, to);
startService(convertIntent);

}

private void rateLoaded(ConversionRate newRate) {
currentRate = newRate;
calculateToAmount();

}

private void calculateToAmount() {
if (currentRate != null) {

Float toAmount = currentRate.convert(fromAmountField.getText().toString());
String formattedToAmount = String.format("%.2f", toAmount);
toAmountField.setText(formattedToAmount);

}
}

• Click HERE to purchase this book now. discuss

Day 2: What Can I Get for a Buck? • 9

http://media.pragprog.com/titles/7apps/code/Android/android_02_02_edit_text_events/Currency � sevenapps/currencyconverter/ConvertActivity.java
http://media.pragprog.com/titles/7apps/code/Android/android_02_02_edit_text_events/Currency � sevenapps/currencyconverter/ConvertActivity.java
http://pragprog.com/titles/7apps
http://forums.pragprog.com/forums/7apps

This method uses the currency-conversion service, as we saw yesterday;
there’s nothing different here except for organization. The calculateToAmount()
method uses the rate object to calculate a converted amount and then formats
a string to put into the UI. Pretty straightforward. Let’s add one more thing
to make the caching solution work.

Saving Instance Data

This point about caching the rate object on the activity is related to something
we saw yesterday: whenever a configuration change, such as a device rotation,
occurs, the activity is destroyed and a new one is created. That means any
data stored in instance variables won’t be present in the new activity. Android
has a process for dealing with this issue. Before an activity is destroyed,
saveInstanceState() is called with a Bundle.

Android/android_02_03_save_instance_state/Curre … sevenapps/currencyconverter/ConvertActivity.java

@Override protected void onSaveInstanceState(Bundle outState) {
super.onSaveInstanceState(outState);
outState.putSerializable(CURRENT_RATE, currentRate);

}

The system will save the Bundle object and then hand it back into the onCreate()
of the new activity. Then we need to check to see if we have some saved state
and grab what we need out of it.

Android/android_02_03_save_instance_state/Curre … sevenapps/currencyconverter/ConvertActivity.java

if (savedInstanceState != null) {
currentRate = (ConversionRate) savedInstanceState.getSerializable(CURRENT_RATE);

} else {
fromAmountField.setText("1.00");
toAmountField.setText("1.00");

}

Now we’ve got a view in place that works pretty well on phones. It doesn’t
look the best on tablet-size screens, though. It’s very easy to fix this using
Android’s resource system, so let’s do that now.

• 10

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/7apps/code/Android/android_02_03_save_instance_state/Curre � sevenapps/currencyconverter/ConvertActivity.java
http://media.pragprog.com/titles/7apps/code/Android/android_02_03_save_instance_state/Curre � sevenapps/currencyconverter/ConvertActivity.java
http://pragprog.com/titles/7apps
http://forums.pragprog.com/forums/7apps

