
Extracted from:

Seven More Languages in Seven Weeks
Languages That Are Shaping the Future

This PDF file contains pages extracted from Seven More Languages in Seven Weeks,
published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2014 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Seven More Languages in Seven Weeks
Languages That Are Shaping the Future

Bruce A. Tate
Fred Daoud

Ian Dees
Jack Moffitt

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Jacquelyn Carter (editor)
Potomac Indexing, LLC (indexer)
Liz Welch (copyeditor)
Dave Thomas (typesetter)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2014 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-941222-15-7
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—November 2014

http://pragprog.com
rights@pragprog.com

Day 1: Laying a Great Foundation
Our speed tour will focus on the three biggest influences on Elixir: Ruby,
Lisp, and Erlang. Day 1 will show you where Ruby’s influence begins and
ends. I’ll walk you through the basic building blocks of the language, while
taking an informal look at operators, simple types, and expressions. Then,
we’ll look at functions and modules. Finally, we will work with collections of
things and craft together some simple programs with recursion. That’s a lot
to handle, but to get to know this rich language, we’ll have to move fast.

Day 2 will bring forth the strong Lisp influences on the abstract syntax tree
(AST), the foundation for Elixir’s macro system. We’ll focus most of our
attention on building a macro to represent a state machine in code.

We’ll finish our tour by looking into Erlang influences in Day 3. The third day
will a little shorter, because in Days 1 and 2 we have to lay a lot of language
foundation to handle the rich macro material. We’ll use our state machine in
a concurrent, distributed application.

Rarely will you get the opportunity to explore so closely the influences of one
language on another. It’s going to be a long first day, so let’s get started.

Installing Elixir
Elixir is a language based on Erlang (Programming Erlang: Software for a
Concurrent World [Arm07]), which we covered in the first Seven Languages
book (Seven Languages in Seven Weeks: A Pragmatic Guide to Learning
Programming Languages [Tat10]). You’ll need to install Erlang.1 I’m using 17.1,
and you’ll need version 17.0 or later.

Next, you’ll install the language and environment. Find them on the language’s
Getting Started page.2 I used Homebrew, version 0.14, but everything should
work on Elixir version 1.0. Syntax is changing quickly, so if you decide to use
a later version, you’ll need to pay attention to changes in syntax.

Once you’ve installed it all, fire up Interactive Elixir (iex) like this:

> iex
Erlang/OTP 17 [erts-6.1] [source] [64-bit] [smp:8:8]
[async-threads:10] [hipe] [kernel-poll:false]

Interactive Elixir (1.0) - press Ctrl+C to exit (type h() ENTER for help)
iex(1)>

1. http://www.erlang.org/download.html
2. http://elixir-lang.org/getting_started/1.html

• Click HERE to purchase this book now. discuss

http://www.erlang.org/download.html
http://elixir-lang.org/getting_started/1.html
http://pragprog.com/titles/7lang
http://forums.pragprog.com/forums/7lang

SoIt’s Ruby++, Right?
Since José Valim, creator of Elixir, was a member of the Ruby on Rails core
team, many people viewed his new language with Ruby-colored glasses.
Syntactically, you can see more than a coincidental similarity. Try to see what
reminds you of Ruby:

iex> IO.puts "It's B-29s, bub."
It's B-29s, bub.
iex> 4
4
iex> 4 != 5
true
iex> 4 > 5 and 6 > 7
false
iex(2)> Enum.at [], 0
nil
iex> :atom
:atom

Like Ruby and many modern languages, Elixir programs are made up of
simple data types, operators, and functions that roll up into expressions. The
special values nil, true, and false all mean what you think, and are named just
as they are on the Ruby side. Elixir also copies Ruby’s syntax for symbols
instead of Erlang’s atoms.

iex> if 5 > 4, do: IO.puts "You wanted the truth!"
You wanted the truth!
:ok
iex> if nil, do: IO.puts "You wanted the truth!"
nil
:ok

:ok is a typical Elixir return code. Like Ruby, Elixir has do/end syntax for simple
control structures. Like Ruby, Elixir also has one-line syntax for if expressions.
Like Ruby, Elixir has so-called “truthy” expressions. nil and false are false;
everything else is true. Strings have some familiar sugar, too:

iex> "Two plus two is #{2 + 2}"
"Two plus two is 4"

Elixir’s string interpolation drops a string representation of an expression
into the string you specify. There are other similarities to Ruby on the string
side. They can contain escape sequences for unprintable characters such as
newlines and tabs; Elixir allows for multiline representations called heredocs,
and you’ll find C-style sigils, a syntax for formatting literals.

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/7lang
http://forums.pragprog.com/forums/7lang

No, Not Ruby
Although the syntax might be familiar to Ruby developers, under the hood,
things are remarkably different. Elixir is a functional language. The base
types are not objects, and the base types are immutable. You can’t change a
list or a tuple after you’ve defined it the first time.

It’s best to think of Elixir as a language whose syntax is influenced by Ruby.
The similarities end there. Take the = operator, for example:

iex> i = 5
5
iex> 10 = i
** (MatchError) no match of right hand side value: 5

It may look like an assignment here, but it’s not. If you learned Erlang in
Seven Languages, you recognize the = operator as a pattern match. Said
another way, the interpreter asked the question “Do the values on the left
side match the values on the right?” If necessary, the interpreter assigns
unbound variables on the left to match values on the right. Let’s push pattern
matching a little further.

Tuples are collections of fixed size. You can have a two-tuple representing a
city and state, like this:

iex> austin = {:austin, :tx}
{:austin, :tx}
iex> is_tuple {:a}
true

austin is a variable, and we assign a tuple with two atoms, :austin and :tx. Elixir
makes the left side match the right by assigning {:austin, :tx} to the variable
austin. In this case, we matched the whole tuple. We can also use matching to
access both elements of the tuple individually, or using wildcards, we can
access either element in isolation. This concept, called destructuring, is critical.

iex> austin = {:austin, :tx}
{:austin, :tx}
iex> {city, :tx} = austin
{:austin, :tx}
iex> city
:austin
iex> {city, :ok} = austin
** (MatchError) no match of right hand side value: {:austin, :tx}
iex> {_, big_state} = austin
{:austin, :tx}
iex> big_state
:tx

• Click HERE to purchase this book now. discuss

Day 1: Laying a Great Foundation • 7

http://pragprog.com/titles/7lang
http://forums.pragprog.com/forums/7lang

Nice. In this way, you’ll use Elixir to trivially pack and unpack complex data
structures just as you did this one.

So what was all of that noise about surly and opinionated?

In functional languages like Erlang, multiple assignment just won’t work.
You can assign a given variable a value exactly once. That practice means
that these languages are immune from many of the problems related to
mutable state or multiple assignment. To handle this language limitation,
you’ll see developers use different variable values on the left-hand side for
each assignment, and keeping track of those changing values can be tedious
and error prone as code evolves, like this:

...
Price = Catalog.lookup(Item)
Price2 = Price * Quantity
Price3 = Price2 + Price2 * Tax
...

Elixir’s approach looks a little more like the imperative style of Ruby or Java:

...
price = Catalog.lookup(item)
price = price * quantity
price = price + price * tax
...

Some card-carrying Erlang developer now knows exactly what I mean by
opinionated. In fact, his thoughts could be sliding into black rage because
functional programming should not allow reassignment. We can only hope that
he doesn’t have adamantium blades for fingernails and the ability to respawn.

That code looks suspiciously like mutable state, but really, it’s not. The
compiler is playing a game here. The compiler marks each new price as price'
internally, and for each subsequent access. In fact, the compiler is doing
implicitly exactly what the original Erlang program does by hand. The result
is that internally, there’s no mutable state at all.

This language feature expresses an opinion. Does this trick actually make
code more expressive, or does it take you down the slippery slope toward
mutable state and obscure what’s actually happening? Decide for yourself.

The primary Ruby influence, though, isn’t mutability, or ‘true‘s and ‘nil‘s. It’s
intelligent sugar. You express powerful idioms in a way that communicates to
both you and the compiler. The debate is how far syntactic sugar should go.

Elixir is about as much like Ruby as Java is like JavaScript. From here on,
put Ruby out of your head completely, and enjoy the new path Elixir is cutting.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/7lang
http://forums.pragprog.com/forums/7lang

Writing Functions
So far, we’ve seen how some basic types and expressions work, and that the
language relies heavily on pattern matching to accomplish basic tasks. It’s
time to add the basic building block of all functional languages, the function.
Elixir has plenty of different options for declaring and consuming functions.
We’re going to start simple, with unnamed or anonymous functions and then
ramp up to named functions in modules. We can assign a function to a vari-
able like this:

iex> inc = fn(x) -> x + 1 end
#Function<6.80484245 in :erl_eval.expr/5>
iex> inc.(1)
2

When you invoke an anonymous function, you need a . character before your
arguments. This double_call is a higher order function:

iex> double_call = fn(x, f) -> f.(f.(x)) end
#Function<12.80484245 in :erl_eval.expr/5>
iex> double_call.(2, inc)
4

As expected, we called inc.(inc.(2)) and got 4. As you might imagine, you’ll be
working with functions more than any other language construct. Here’s a
shorthand way for declaring a function to add two numbers:

iex> add = &(&1 + &2)
&Kernel.+/2
iex> add.(1, 2)
3

Beautiful. We just used &1 and &2 as placeholders for our arguments. Now
that we have an add, we can use it to declare other functions that build on it.

iex> inc = &(add.(&1, 1))
#Function<6.80484245 in :erl_eval.expr/5>

iex> inc.(1)
2
iex> dec = &(add.(&1, -1))
#Function<6.80484245 in :erl_eval.expr/5>

iex> dec.(1)
0

inc and dec are examples of partially applied functions. As you learned in Elm,
these functions take existing functions and apply only a subset of arguments
to them. For example, inc is a partially applied function, applying the second
argument and leaving the first unapplied.

• Click HERE to purchase this book now. discuss

Day 1: Laying a Great Foundation • 9

http://pragprog.com/titles/7lang
http://forums.pragprog.com/forums/7lang

Composing with Pipes
Functional programming is about building functions that work together. One
of the most important compositions is running functions in sequence,
matching up inputs and outputs. Let’s express two steps forward and one
step back with inc and dec:

iex> x = 10
10
iex> dec.(inc.(inc.(x)))
11

We started with x = 10. A step forward is an inc and a step back is dec. If you
start from the inside and work your way out, you can see that we are actually
doing inc, inc, and dec. But the intention is not clear. Let’s remedy that.

iex> 10 |> inc.() |> inc.() |> dec.()
11

That’s much clearer. These pipes work just like they do in Factor or Elm.
Elixir evaluates the pipe from left to right, passing the expression on the left-
hand side of the pipe as the first argument of the function on the right. If you
had two named functions, inc and dec, you could strip away even more syntax
with 10 |> inc |> inc |> dec. The pipe operator translates the obtuse inside-out
representation to a simple and direct statement of what our program accom-
plishes. Clojure developers, think ->.

You’ll find that the pipe operator is perhaps the most important operator in
the language in the same way that Unix shell languages rely on the | operator.
It allows you to express ideas in the same way that you’re used to consuming
information: from left to right, with inputs on the left contributing to the
process on the right. You can make complex problems simpler by expressing
them as a pipe of simpler functions.

As we continue to work with bigger and bigger building blocks in the language,
we go from the function to the module. In the next section, we’ll organize
named functions into modules.

Using Modules
Elixir programmers group functions, macros, and other constructs into
modules. Learning Elixir is easier if you think of a module definition as plain,
old executable code rather than a series of function definitions. Take a look:

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/7lang
http://forums.pragprog.com/forums/7lang

iex> defmodule Silly do
...> IO.puts "Pointless existence"
...> end
Pointless existence
{:module, Silly, ..., :ok}

Notice that the compiler ran the module, and printed the expression Pointless
existence. You can see that as Elixir is loading the module, it will just execute
each line, in sequence. Most of the time, those lines will define other functions
or modules.

For now, think of modules as specialized functions that generate code at
compile time. defmodule is a macro that defines a module, and def is a macro
that defines functions. Keep this knowledge in the back of your mind as we
walk through these basic examples.

Named Functions

Let’s create some modules to do elementary geometry. We’ll start with some
simple functions to compute the area and perimeter of a rectangle. You might
start with a couple of functions that each take parameters h and w, like this:

defmodule Rectangle do
def area(w, h), do: h * w
def perimeter(w, h), do: 2 * (w + h)

end

We call the defmodule function, which defines a module. We provide a block
that calls the def function twice, creating two functions within the module.

area and perimeter are functions you’d expect to apply to a rectangle, so we can
improve on the API. Instead of passing in individual dimensions, let’s pass
in a tuple with two dimensions that represents our rectangle, like this:

elixir/geometry.exs
defmodule Rectangle do

def area({h, w}), do: h * w

def perimeter({h, w}) do
2 * (h + w)

end
end

That’s much better. Now, the API is Rectangle.area(shape), where shape is a two-
tuple that represents a rectangle with width and height. The API clearly
expresses our intentions. We use pattern matching to pick off each dimension,
and then use those dimensions in a calculation.

• Click HERE to purchase this book now. discuss

Day 1: Laying a Great Foundation • 11

http://media.pragprog.com/titles/7lang/code/elixir/geometry.exs
http://pragprog.com/titles/7lang
http://forums.pragprog.com/forums/7lang

