
Extracted from:

Seven More Languages in Seven Weeks
Languages That Are Shaping the Future

This PDF file contains pages extracted from Seven More Languages in Seven Weeks,
published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2014 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Seven More Languages in Seven Weeks
Languages That Are Shaping the Future

Bruce A. Tate
Fred Daoud

Ian Dees
Jack Moffitt

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Jacquelyn Carter (editor)
Potomac Indexing, LLC (indexer)
Liz Welch (copyeditor)
Dave Thomas (typesetter)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2014 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-941222-15-7
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—November 2014

http://pragprog.com
rights@pragprog.com

Day 2: Taming Callbacks
In Day 2, we’re going to build the skills necessary to attack the most sophis-
ticated of user interface problems: building a game. We’re going to learn to
handle user input and output, the most difficult concepts for functional lan-
guages. We’ll also learn to display images. You’ll find that Elm is a natural
language for doing so.

As a wanna-be browser language, Elm has a big disadvantage. It’s not Java-
Script. You’ll need to rely on another layer in the browser to compile Elm to
JavaScript. But Elm also has a huge advantage.

It’s not JavaScript.

If you want to herd sheep like a sheep dog, you don’t necessarily have to be
a dog. You just have to herd sheep.

Before we get rolling, let’s spend some time with Evan Czaplicki, creator of
Elm. He’ll help us understand the motivations behind the language.

Us: Why did you create Elm?

Czaplicki: I was extremely frustrated by HTML and CSS. Basic things like center-
ing, or even worse vertical centering, were shockingly difficult. I kept finding five
ways to do the same thing, each with its own set of weaknesses and corner cases.
I wanted reusable styles and components. I was going to use the same sidebar on
every page and there just was not a way. It makes sense why these things were
hard in a language originally designed for text markup, but I felt that there had to
be a more declarative and more pleasant way. So my goal was to create a better
way to do GUI programming. I wanted to write front-end code that I was proud of.

Us: So why choose a functional language?

Czaplicki: I wanted to show that functional programming can be great for real
problems. Many functional folks have a way of saying extremely interesting and
useful things in a totally inaccessible and impractical way, and I wanted to fix this.
I wanted to prove that functional programming actually helps you write nicer code.
Elm’s focus on examples, quick visual feedback, and shockingly short code are all
meant to prove that purely functional GUIs are a good idea.

Us: What were your main influences?

Czaplicki: Haskell has been a big influence, but so have OCaml, SML, and F#.
Syntax is very much like Haskell, though semantics are often closer to OCaml. I
tend to say “Elm is an ML-family language” to get at the shared heritage of all these
languages.

Stephen Chong and Greg Morrisett are my major influences in how I think about
programming languages. With that foundation, I try to do a literature review for any
new feature and end up looking at all sorts of languages. For example, Java and

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/7lang
http://forums.pragprog.com/forums/7lang

Python were extremely helpful for Elm’s docs format, and Clojure and Scala are
great resources on how to present a compile-to-VM language to people new to
functional programming. The full list is quite long by now!

Us: What is the philosophy of the language?

Czaplicki: Balance simplicity and expressiveness. Introduce only the minimal set
of features to make GUI programming a great experience. Static types, functional
programming, and reactive programming are extremely important tools for writing
short and reliable code, but it is a lot to learn all at once.

Not only does Elm need to make these things simple and accessible, it needs to
make their value immediately obvious. Elm is not about being theoretically better,
it is about being demonstrably better.

Us: What is your favorite language feature?

Czaplicki: I really love Elm’s extensible records. This feature is based on Daan
Leijen’s ideas from Extensible Records with Scoped Labels, and because I was not
involved in the theory work, it is something that delights me by balancing expres-
siveness and simplicity so beautifully. This is the kind of balance I hope to achieve
when I design features.

Elm was built from the ground up to handle the most difficult aspects of user
interface development. As you work through Day 2, look for ways that this
new language helps you herd all of the elements of a great design into a
coherent application.

Grappling with Callback Hell
Whether you’re building a business application with user interface controls
or a game, you need to be able to react to events. In fact, everything you do
is a reaction to some event. The typical JavaScript program relies on sending
events through callback functions, making programs much more responsive
but at a cost. They’re much too hard to read. Here’s a typical example using
the JQuery library with JavaScript that lets you grab the mouse position:

$(document).ready(function () {
var position = {'x': 0, 'y': 0};
$(document).bind('mousemove', function(event) {

position = {'x': event.pageX, 'y': event.pageY};
});

setInterval(function () {
// custom position code

}, seconds * 1000);
});

Understanding that code takes a little experience. When the page loads, we
get a ready callback. At that time, we bind the mousemove event to a function

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/7lang
http://forums.pragprog.com/forums/7lang

that sets a position variable. Then, at specific intervals, we have another callback
function that uses position. Notice that our code binds anonymous functions
to events. Said another way, we’re putting JavaScript in charge of the code’s
organization. We call this inside-out programming strategy inversion of control.

For a feature so trivial, that code is much too complex, but it’s a trade-off.
We get better responsiveness since this program will change the mouse
position every time the user moves the mouse. We trade away simplicity. The
problem is that we really need both.

Avoiding Callbacks with Lifts and Signals
In Elm, we don’t give up simplicity to get responsiveness. Instead of inversion
of control, we’ll use signals and a function called lift. A signal is a function
representing a value that varies over time. The lift function applies a function
to the value of a signal each time the signal updates. Let’s try it out.

These programs will allow us to see how Elm handles user interaction without
callbacks. For this part of the chapter, we’ll use the Elm online editor5 to try
interactive programs without having to fire up your own server. You’ll type
code on the left, and see the results on the right. Let’s start with a simple
function to pick up the user’s mouse position:

import Mouse

main = lift asText Mouse.position

Next, click the compile button. You’ll see output that looks like this:

(29, 162)

That’s much simpler. We import the Mouse module, and then declare the main
function.

Conceptually, lift applies a function to a signal. Let’s say the function is f, and
the signal represents the value x that varies over time. Each time the signal
updates, Elm will call f(x).

In the previous code, the Mouse.position signal returns a tuple containing the
mouse position. Our function is asText, which converts to text. Mouse.position
will “fire” whenever the mouse moves, and lift will call asText with the new
mouse position. Interestingly, the result is a new signal! Rather than a call-
back, you have straight composition of functions. The result is revolutionary.

5. http://elm-lang.org/try

• Click HERE to purchase this book now. discuss

Day 2: Taming Callbacks • 7

http://elm-lang.org/try
http://pragprog.com/titles/7lang
http://forums.pragprog.com/forums/7lang

Looking at the bottom of the window, you can see that main is actually a sig-
nal—one that we display on the screen. That means Elm will update the
window whenever the mouse position moves.

There are no callbacks, and no inversion of control. We just use a signal,
convert to text, and lift the present value when the signal changes. Let’s try
another one. Let’s use the count function, which counts the number of times
a signal updates. Add count before the signal, and wrap it in parentheses, like
this:

import Mouse

main = lift asText (count Mouse.position)

Navigate to the window on the right, move the mouse, and you’ll see a number
that quickly counts mouse moves:

246

We can simply change the signal to count mouse clicks:

import Mouse

main = lift asText (count Mouse.clicks)

In this case, the count function counts the number of signal updates, which
are mouse clicks. You can start to see how we can write code that respects
the rules of functional programming, but is still reactive and easy to under-
stand. Let’s see how keyboard signals would work:

import Keyboard

main = lift asText Keyboard.arrows

Compile it, click on the right-hand window, and press the up and right arrows.
You’ll see:

{ x = 1, y = -1 }

You can intuitively see exactly what’s going on. lift updates the text when the
signal changes, so we get a clean program that tells us the state of the arrow
keys, in a form that we can easily use. Since we can compose with functions,
we can get more sophisticated.

Combining Signals
Most user interfaces use more than one signal at once. For example:

• Find out where a user clicked

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/7lang
http://forums.pragprog.com/forums/7lang

• Scroll based on window size and mouse position
• Find the value of input fields when the user clicks a mouse
• Drag and drop items

These problems are all combinations of signals. For more advanced applica-
tions, a simple lift is not enough. Several other functions help us combine
signals in more sophisticated ways. One of the most common user interface
problems is to find where a user clicks.

Let’s use the function sampleOn. That function allows us to sample one signal
when another updates, like this:

import Mouse

clickPosition = sampleOn Mouse.clicks Mouse.position
main = lift asText clickPosition

We build two signals, clickPosition and main. First, we create a signal with sampleOn.
When the Mouse.Clicks signal updates, we’ll sample the most recent Mouse.position.
The result is a new signal that returns a mouse position and changes when-
ever the user clicks a mouse. Next, we simply build our main signal. We lift
asText onto our clickPosition signal. Simple. We can sample input controls in the
same way.

Or, let’s say you’re implementing scrolling with a scroll bar. You need to find
out how far down a page the mouse is, like this:

import Mouse
import Window

div x y = asText ((toFloat x) / (toFloat y))
main = lift2 (div) Mouse.y Window.height

Run it and scroll on the right-hand side to get something like this:

0.42973977695167286

This example uses lift2. Like lift, this function lifts functions onto signals, but
uses two signals and two-argument functions.

First, to simplify type conversions, we create a version of division that takes
integers and returns text. Next, we use lift2 to lift div onto two signals, Mouse.y
and Window.height. Think about what a similar JavaScript program would look
like. It doesn’t take too many examples to see Evan’s vision. Monitoring user
inputs is a functional job.

• Click HERE to purchase this book now. discuss

Day 2: Taming Callbacks • 9

http://pragprog.com/titles/7lang
http://forums.pragprog.com/forums/7lang

Maintaining State
Let’s use these same principles to produce an interactive experience. We’ll
work with an entry field, and update another part of the page. In functional
languages like Elm, you have to learn tricks to handle state. We’ve seen how
signals can help access things like the mouse position that changes over time,
and how we use recursion to process lists. We manage state by the way we
structure our functions. The fold functions, which you might know from Lisp
or Haskell, are a good example. They take a two-argument function, an initial
value, and a list. Here’s an example of foldl in Elm:

> foldl (+) 0 [1, 2, 3]
6 : number

Here’s what happens at each step:

• fold (+) 0 [1, 2, 3]. fold takes the initial value of the list, 1, and the accumulator,
0, and adds them together, returning 1, and uses that number, with the
remainder of the list, calling fold again.

• fold (+) 1 [2, 3]. Elm takes the leftmost value of the list, 2, and the accumu-
lator, 1, and passes those to the (+) function, returning 3.

• fold (+) 3 [3]. We call (+) with the accumulator 3 and the leftmost list element
of 3, returning 6, and we’re done.

Elm will let you fold from the left (foldl) or fold from the right (foldr). You might
also want to fold a signal from the past, folding in the results of a signal. Elm
provides the function foldp for that purpose, meaning fold from the past. Let’s
say we want to call a signal every time an arrow key is pressed. We want to
count up with the right arrow or count down with the left arrow. foldp takes
a function, an initial value, and a signal to solve that problem.

Here’s the signal you can use:

import Keyboard

main = lift asText Keyboard.arrows

Press the left arrow, and you’ll get { x = -1, y = 0 }; press the right arrow for { x
= 1, y = 0 }. Now, we just need to accumulate state. We can use foldp, like this:

import Keyboard

main = lift asText (foldp (\dir presses -> presses + dir.x) 0 Keyboard.arrows)

Now, we create one signal with foldp. That signal adds the accumulator, called
presses, to the x value from the signal of Keyboard.arrows. We can then lift that
value onto the asText function. Now, when you run the application, you’ll get

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/7lang
http://forums.pragprog.com/forums/7lang

a running total of presses. The left decrements the count, and the right
increments the count.

Believe it or not, foldp is the foundation of our game, as you’ll see on Day 3.

Working with Text Input
Functional languages are great at transforming text. Elm is excellent for
capturing text too. Here’s an example that takes some input, manipulates it,
and puts it on the screen:

import String❶
import Graphics.Input as Input
import Graphics.Input.Field as Field

content = Input.input Field.noContent❷

shout text = String.toUpper text❸
whisper text = String.toLower text
echo text = (shout text) ++ " " ++ (whisper text)

scene fieldContent =❹
flow down
[Field.field Field.defaultStyle content.handle identity "Speak" fieldContent
, plainText (echo fieldContent.string)
]

main = lift scene content.signal❺

Let’s break that down.

❶ We import the libraries we’ll need. String allows us to do string manipula-
tion, and Graphics.Input gives us access to input fields.

❷ Next, we define a function to return an Input record, passing in the initial
field content. We’ll use Input records. This API will allow us to create
records, which will let us access all of the data, signals, and functions we
need.

❸ Next, we define a couple of simple functions for working with text, the
shout and whisper functions. We use those to build an echo function to
transform the text. These functions know nothing about user interfaces.
They just work on raw String data.

❹ The next task is to build our layout, called scene. We use the flow function
to specify our form, which will flow from the top down. Our form has two
lines: a field and some text.

• Click HERE to purchase this book now. discuss

Day 2: Taming Callbacks • 11

http://pragprog.com/titles/7lang
http://forums.pragprog.com/forums/7lang

The field is an input control, expressed as the record that’s returned by
our content function. We pass in some configuration options defining the
style, a handler from the input record, an id, a placeholder value, and a signal.

The next element of our layout is a line of text. We express the text as a
signal that we create with the plainText function. Whenever fieldContent
updates, our signal will fire and show the contents passed through our
echo function.

❺ Finally, we create one last signal by lifting our content.signal onto scene. The
signal will fire each time the user updates the entry field.

Whew. That’s a lot of code packed into a short example. It may seem a little
alien at first, but Elm’s worldview is the perfect complement to web front-end
programming. Each user interface is just a stream of transformed user inputs.
Now that we’ve seen how text works, let’s look at one more concept we’re
going to need for our game. Instead of working with text, we will draw shapes
based on user input.

• 12

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/7lang
http://forums.pragprog.com/forums/7lang

