
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

CHAPTER 5

Modifying Busy Databases
Without Downtime

Over time, application codebases and database structures evolve. Your
development team’s velocity depends on being able to deliver new code and
database changes quickly. Rails developers use Active Record migrations to
evolve the database structure, creating DDL changes at a steady rate alongside
application code changes.

When your application is new and query volume is low, modifying database struc-
tures has little to no risk. Since tables are locked for changes for a brief period,
with low row counts and low numbers of concurrent users, this brief lock
period is no big deal.

However, for applications that are successful and have grown in data volume
and query volume, with increased numbers of concurrent sessions, making
on-the-fly database structural changes adds more risk for downtime to con-
current user sessions contending for the same data.

One of the challenges you’ll face in this phase is continuing to evolve your
database structure at the same rate while avoiding risk and downtime.

How do you identify problematic database changes and avoid those pitfalls?
You’ll learn how to do that in this chapter.

Besides structural changes, you may also perform large-scale data backfills
or data migrations. Backfills populate one or more empty columns, using
queries and performing updates during a short period, where they run in
high volume. Large backfill operations also carry risk to the running operations
for concurrent sessions. For that reason, we’ll include big backfills in the
scope of riskier operations to design safeguards for.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/aapsql
http://forums.pragprog.com/forums/aapsql

With those goals in mind, let’s look at some of the terminology you’ll work with:

Busy Databases Terminology

• Strong Migrations—Library that adds safety to migrations

• Multiversion Concurrency Control (MVCC)—Mechanism for
managing row changes and concurrent access

• ACID—Set of Guarantees that PostgreSQL makes including
Atomicity, Consistency, Isolation, Durability

• Isolation levels—Configurable access level for transactions

• Denormalization—Duplicating some data for improved access
speed

• Backfilling—Populating new empty columns for a new table
design

• Table rewrites—Internal changes from schema modifications
that cause a significant availability delay

You’ve learned some changes are dangerous at higher levels of scale. What
are those and how do we find them?

Identifying Dangerous Migrations
As an experienced Rails developer and PostgreSQL user, you’ve likely had migra-
tions that didn’t run correctly. These might have resulted in failed deployments
that blocked releases. You’d like to detect these earlier and avoid failed
migrations.

One solution would be to take your database offline to perform changes.
Structural changes would be perfectly safe this way!

Unfortunately, that strategy is usually impractical. Modern development
teams don’t take their databases down for structural changes. Modern teams
continually ship code changes and schema changes every day. Fortunately,
PostgreSQL can keep pace with these needs, but you’ll need to learn some
tricks and add processes around detecting riskier scenarios to achieve this.

Safe Migrations

Active Record migrations have no built-in concept of “safety” or
“danger.” All migrations are treated as being equally safe or unsafe.

• 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/aapsql
http://forums.pragprog.com/forums/aapsql

Fortunately, third-party gems like Strong Migrations1 can be added to intro-
duce a concept of safety to your migrations process.

Strong Migrations identifies potentially unsafe migrations, by comparing the
migration code to well known problematic patterns. Since it’s hooked into
the normal migrations process, it prevents unsafe migrations by default. To
help developers out, Strong Migrations provides safer alternatives when an
unsafe migration is detected.

Let’s explore that further.

Learning from Unsafe Migrations
One of the goals in preventing unsafe migrations is to prevent blocking con-
current queries while a structure change is made, which causes application
errors.

To learn more about how queries get blocked, you’ll simulate the scenario.
The unsafe migration you’ll work with adds a “Volatile default” value.

To simulate the effect, you’ll create a long-running modification and then run
a query in that same time period. You’ll use Rideshare and the temp schema
that was set up earlier.

Launch psql, connecting to the Rideshare database. To reset the temp schema,
use the CASCADE option, which drops any tables in that schema. Then create
it again.

DROP SCHEMA IF EXISTS temp CASCADE;

CREATE SCHEMA temp;

Within the temp schema, create a slimmed down users table with an id and name
column.

Populate the table with ten million rows. Use CREATE TABLE AS to create the table
and populate it in a single statement.

Use GENERATE_SERIES() to get integer values from one to ten million for the id
and to create a unique name.

Toggle timing on using \timing to see how long the operation takes.

This will take a bit of time to populate. Run the following statements:

1. https://github.com/ankane/strong_migrations

• Click HERE to purchase this book now. discuss

Learning from Unsafe Migrations • 5

https://github.com/ankane/strong_migrations
http://pragprog.com/titles/aapsql
http://forums.pragprog.com/forums/aapsql

sql/migration_dangerous_defaults_setup.sql
-- Enable timing
\timing

-- create users table (id, name)
-- populate it with 10,000,000 rows
CREATE TABLE temp.users AS
SELECT

seq AS id,
'Name-' || seq::TEXT AS name

FROM GENERATE_SERIES(1, 10000000) AS t(seq);

Verify the temp.users table structure by running \d temp.users. Confirm it has ten
million rows.

Imagine you’ve made an application change and want to associate users to
cities. You’ll track a City for the User in a new city_id column. You want both
new and existing users to have a city assigned.

In the application, you might prompt users to add their city after adding the
column. But you’d like the column to have a default value to start.

Add a new city_id column and give it a default value.

You’ll perform this two times to illustrate a difference between how a Volatile
and Non-volatile Default works when being added. The first one is relatively
safe since it uses a non-volatile, or “static” value. The second version is unsafe
on a large table because of the Volatile Default.

Run the following statement to set the Non-volatile value of 1 for all rows.

sql/migration_safe_modification.sql
-- add column with a constant default value
-- This is safe to do and runs fairly quick
ALTER TABLE temp.users ADD COLUMN city_id INTEGER

DEFAULT 1;

After adding the column, run \d temp.users and make sure city_id has the Default
defined.

Drop the column you just added to prepare to add it a second time.

ALTER TABLE temp.users DROP COLUMN city_id;

For the next run, it will help to have two different sessions. The following
examples have psql1 and psql2 in their name, referring to where you should
run the statements.

In the unsafe version, you’ll run the ALTER TABLE statement from the psql1
session.

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/aapsql/code/sql/migration_dangerous_defaults_setup.sql
http://media.pragprog.com/titles/aapsql/code/sql/migration_safe_modification.sql
http://pragprog.com/titles/aapsql
http://forums.pragprog.com/forums/aapsql

Run that now.

sql/migration_dangerous_modification_psql1.sql
-- !!! Dangerous Version !!!
-- Adds a "non-constant" or "volatile" DEFAULT
-- This takes a LOT longer
-- Table is locked in `ACCESS EXCLUSIVE` mode for duration
ALTER TABLE temp.users ADD COLUMN city_id INTEGER

DEFAULT 1 + FLOOR(RANDOM() * 25);

While that’s running, from the psql2 session, run the following SQL query,
which is normally very quick:

sql/migration_dangerous_modification_psql2.sql
SELECT * FROM temp.users LIMIT 1;

The DDL in psql1 can take ten seconds or more to run. In that time, the query
in psql2 will appear “hung” until psql1 finishes. Once psql1 finishes, psql2
instantly finishes.

psql2 appeared hung because psql1 had locked the table with exclusive access
while the Default value was added to all rows. Since there are ten million
rows, performing this change took a long time, and the table was locked, even
blocking SELECT queries until it finished.

Imagine instead of the single query from psql2, there are hundreds of queries
running during that lock period, all getting blocked. This could quickly cause
thousands of errors in your application, something you’d like to avoid!

What steps can be put in place to help detect these issues?

• Click HERE to purchase this book now. discuss

Learning from Unsafe Migrations • 7

http://media.pragprog.com/titles/aapsql/code/sql/migration_dangerous_modification_psql1.sql
http://media.pragprog.com/titles/aapsql/code/sql/migration_dangerous_modification_psql2.sql
http://pragprog.com/titles/aapsql
http://forums.pragprog.com/forums/aapsql

