
Extracted from:

High Performance PostgreSQL for Rails
Reliable, Scalable, Maintainable Database Applications

This PDF file contains pages extracted from High Performance PostgreSQL for Rails,
published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2023 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas

http://www.pragprog.com

High Performance PostgreSQL for Rails
Reliable, Scalable, Maintainable Database Applications

Andrew Atkinson

The Pragmatic Bookshelf
Dallas, Texas

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2023 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 979-8-88865-038-7
Encoded using the finest acid-free high-entropy binary digits.
Book version: B1.0—August 30, 2023

https://pragprog.com
support@pragprog.com
rights@pragprog.com

CHAPTER 7

Improving Query Performance
In this chapter you’ll analyze SQL queries running on PostgreSQL, developing
a richer understanding of their characteristics as they relate to performance.

To do that you’ll learn how to generate and read query execution plans, and
use statistics that the database continually collects. Once you understand
which portions of a query are most costly, you can begin to use tactics that
reduce the costly portions which can improve the overall scalability of your
server instance.

Query optimization is a complex subject, with entire books dedicated to cov-
ering it. In this chapter you’ll get equipped with the basics, learning where
to find information and how to interpret it.

Review the following terminology to learn about it for the first time or get
refreshed on it. You’ll be working with terms like selectivity, cardinality, a
variety of Index types, filtering, sorting, and more in this chapter.

Query Performance Terminology

• Selectivity — How selective a query is

• Cardinality — How many unique values there are

• Sequential Scan — Reading all rows in table

• Index Scan — Fetching values from an Index on a table

To get insights from your query execution, you’ll also work with your logs.
Before going to PostgreSQL logs, what kind of query information can you get
from Active Record logs?

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/aapsql
http://forums.pragprog.com/forums/aapsql

Logging Slow Queries With Active Support Notifications
With Ruby on Rails and without any extra gems, plugins, or database exten-
sions, a wealth of query information can be added to the Rails application
log. Active Support Notifications1 can be used to monitor slow queries. (See:
Track slow DB queries without additional gems2)

To see this in action, read and understand the Slow Query Subscriber class
added to Rideshare that uses Active Support.

The Subscriber listens for events formatted as sql.active_record that have query
information. The duration of the query can be calculated using the start and
finish times associated with the event. When the duration exceeds 1 second,
the full SQL statement can be logged using the Rails logger.

Review the class in Rideshare or copy this:

ruby/slow_query_subscriber.rb
Inspiration: https://twitter.com/kukicola/status/1578842934849724416
class SlowQuerySubscriber < ActiveSupport::Subscriber

SECONDS_THRESHOLD = 1.0

ActiveSupport::Notifications.subscribe('sql.active_record')
do |name, start, finish, _, data|

duration = finish - start

if duration > SECONDS_THRESHOLD
sql = data[:sql]
Rails.logger.debug "[#{name}] #{duration} #{sql}"

end
end

end

Open bin/rails console to test this out. By running the query SELECT pg_sleep(1); from
Active Record as a query that simulates taking 1 second or more, you’ll see
the instrumentation get triggered and the following log output.

irb(main):004:0> ActiveRecord::Base.connection.execute("SELECT pg_sleep(1)")
[sql.active_record] 1.005035 SELECT pg_sleep(1)

(1005.2ms) SELECT pg_sleep(1)

In this technique you’ve logged a slow query from the client application side.
What about when you want to view slow queries from the server side?

1. https://guides.rubyonrails.org/active_support_instrumentation.html
2. https://twitter.com/kukicola/status/1578842934849724416/photo/1

• 4

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/aapsql/code/ruby/slow_query_subscriber.rb
https://guides.rubyonrails.org/active_support_instrumentation.html
https://twitter.com/kukicola/status/1578842934849724416/photo/1
http://pragprog.com/titles/aapsql
http://forums.pragprog.com/forums/aapsql

Capture Query Statistics In Your Database
The queries in your database consume resources and it’s helpful to focus
your optimization efforts on the most costly queries. To do that you’ll want
to get a global view of all queries to see which ones are most costly. You’ll use
the pg_stat_statements3 module which you configured in an earlier chapter, and
will be referred to as PGSS.

PGSS takes each query and removes the parameters from it, creating a sort
of query group or pattern. Each query then can be put into this group or
pattern, and statistics can be collected at the group or pattern level. PGSS
then makes the statistics available with a system catalog view.

These groups or patterns are called the normalized form of the query. Each
normalized query gets a Query Identifier (queryid). The queryid uniquely identifies
the original query text before the normalization process. The parameters are
removed in the normalization process and replaced with placeholder charac-
ters.

Part of the purpose of the normalization where parameters are removed, is
so that queries with the same structure can be grouped together. Statistics
can then be computed across queries that are similar, sometimes referred to
as a “group”.

Query statistics are at the group level including the duration and the number
of calls, across all instances of a query within the group that may have very
different sets of specific parameters.

Enabling the PGSS module requires a database restart. PGSS is generally
recommended to add for all databases. Although it adds a minimal amount
of latency to collect statistics, the information it provides is worth it. PGSS
is supported by cloud providers of PostgreSQL. If you don’t already have it
enabled in your production database, plan a time to make this parameter
change and restart your database during a low activity period.

To configure the module, add pg_stat_statements to shared_preload_libraries in post-
gresql.conf. Once that’s done and PostgreSQL has restarted, you’ll enable the
extension.

To enable the extension, run the following statement from psql. This only
needs to be done once per database.

3. https://www.postgresql.org/docs/current/pgstatstatements.html

• Click HERE to purchase this book now. discuss

Capture Query Statistics In Your Database • 5

https://www.postgresql.org/docs/current/pgstatstatements.html
http://pragprog.com/titles/aapsql
http://forums.pragprog.com/forums/aapsql

sql/create_extension.sql
CREATE EXTENSION pg_stat_statements;

You may also use ALTER SYSTEM to modify shared_preload_libraries from a psql prompt
but this isn’t recommended. This method generates a value in postgresql.auto.conf
that overrides the value in postgresql.conf (Thanks to Lukas Fittl for this tip!4).

This can lead to confusion about which value is active, so consider making
all changes only in your PostgreSQL config file and keeping a version controller
backup of your single config file.

Rideshare enabled PGSS by enabling the extension via a Rails Migration.

Now that you’ve enabled PGSS, read on to find out how to populate and review
query statistics for Rideshare.

Rideshare Query Statistics
Since Rideshare isn’t a running system, you’ll need to simulate application
activity by populating some query information.

To do that, start up a Rideshare server by running bin/rails server from your
Terminal.

In another terminal window, run bin/rails simulate:app_activity to simulate activity.
You’ll should see queries being logged to your server. Since PGSS was enabled
earlier, when those queries arrived in PostgreSQL, the denormalization and
statistics collection process was happening in the background.

PGSS tracks 5000 normalized queries by default. To track more than that,
raise the pg_stat_statements.max value. The least-executed queries are discarded
when the max is reached.

From psql, query SELECT * FROM pg_stat_statements; to view everything PGSS has
collected. A more useful query, though, might be to look at the top few slowest
queries.

Once you’ve done that, PGSS should have captured some statistics.

From your terminal, run psql --dbname rideshare_development again and then use
the following query to look at some of the queries and fields of data from
PGSS. You may want to run SELECT pg_stat_statements_reset(); to reset the statistics
and run the Rideshare simulation again to isolate the results to being only
from the simulation.

4. https://www.postgresql.org/docs/current/config-setting.html

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/aapsql/code/sql/create_extension.sql
https://www.postgresql.org/docs/current/config-setting.html
http://pragprog.com/titles/aapsql
http://forums.pragprog.com/forums/aapsql

sql/ten_worst_queries.sql
SELECT

total_exec_time,
mean_exec_time,
calls,
query

FROM pg_stat_statements
ORDER BY mean_exec_time DESC
LIMIT 10;

You should now see some Rideshare queries in the PGSS results. A result
row will contain total_exec_time, avg_ms, calls, and the normalized query like in
this example:

sql/pg_stat_statements_result.sql
-- -[RECORD 1]-------------------------
-- total_exec_time | 2903.9372489999996
-- avg_ms | 580.7874497999999
-- calls | 5
-- query | SELECT "users".* FROM "users" WHERE "users"."type" = $1

This is great. You can now review statistics collected database-wide for
Rideshare queries. You’re accessing these results from psql.

When you work on a team of application developers who might not want to
use psql to view this information, how can you more easily expose it to them?

• Click HERE to purchase this book now. discuss

Rideshare Query Statistics • 7

http://media.pragprog.com/titles/aapsql/code/sql/ten_worst_queries.sql
http://media.pragprog.com/titles/aapsql/code/sql/pg_stat_statements_result.sql
http://pragprog.com/titles/aapsql
http://forums.pragprog.com/forums/aapsql

