
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

CHAPTER 7

Improving Query Performance
In this chapter, we’ll focus on SQL queries and factors that influence their
performance.

You’ll learn about query execution plans and how to read them, identifying
the most costly parts. With an understanding of the costs, you’ll learn tactics
to lessen them, speeding up queries and reducing use of system resources.

Query optimization is a complex subject with entire books dedicated to it. In
this chapter, you’ll get set up with the basics.

Review the following terminology you’ll see in upcoming sections:

Query Performance Terminology

• Selectivity—How narrow or wide a selection is
• Cardinality—How many unique values there are
• Sequential scan—Reading all rows for a table, also called table scan
• Index scan—Fetching values from an index
• Index-only scan—Fetching values only from the index, without

needing to access table data

Although you’ll primarily deal with SQL and PostgreSQL in this chapter, let’s
start out by discussing slow query visibility in Active Record.

How can you find slow queries?

Active Support Instrumentation for Queries
Without adding extra Ruby gems or PostgreSQL extensions, you can capture
slow queries to the Rails log. Active Support Notifications1 are a mechanism

1. https://guides.rubyonrails.org/active_support_instrumentation.html

• Click HERE to purchase this book now. discuss

https://guides.rubyonrails.org/active_support_instrumentation.html
http://pragprog.com/titles/aapsql
http://forums.pragprog.com/forums/aapsql

that emit events with event data. The relevant events here are sql.active_record
events.

How does that work? Take a look at the following slow query Subscriber class,
which was added to Rideshare.

The Subscriber listens for sql.active_record events, calculating a query duration
from the start and finish values. When the query takes more than one second,
the query text is logged.

ruby/slow_query_subscriber.rb
Inspiration: https://twitter.com/kukicola/status/1578842934849724416
class SlowQuerySubscriber < ActiveSupport::Subscriber

SECONDS_THRESHOLD = 1.0

ActiveSupport::Notifications.subscribe('sql.active_record')
do |name, start, finish, _, data|
duration = finish - start

if duration > SECONDS_THRESHOLD
Rails.logger.debug "[#{name}] #{duration} #{data[:sql]}"

end
end

end

Open bin/rails console to test this out. Run SELECT PG_SLEEP(1); within ActiveRecord::Base
.connection.execute() to create a query that will take one second. You’ll see the
Subscriber is triggered, and the query is logged with sql.active_record prepended:

ruby/active_record_slow_query_subscriber.rb
ActiveRecord::Base.connection.execute("SELECT PG_SLEEP(1)")
[sql.active_record] 1.008904 SELECT PG_SLEEP(1) /*application='Rideshare'*/

(1009.2ms) SELECT PG_SLEEP(1) /*application='Rideshare'*/

While this technique can be used for the Rails log, how might you capture
slow queries in PostgreSQL?

Capture Query Statistics in Your Database
The queries in your database consume resources. You’ll want to optimize
them to be less costly, focusing your optimization efforts on the biggest ben-
eficiaries.

To find costly queries and make data-driven decisions, you’ll need a global
view of all queries and their statistics. To do that, use the pg_stat_statements2

module you configured earlier (see Modifying Your PostgreSQL Config File,
on page ?), which we’ll abbreviate PGSS.

2. https://www.postgresql.org/docs/current/pgstatstatements.html

• 4

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/aapsql/code/ruby/slow_query_subscriber.rb
http://media.pragprog.com/titles/aapsql/code/ruby/active_record_slow_query_subscriber.rb
https://www.postgresql.org/docs/current/pgstatstatements.html
http://pragprog.com/titles/aapsql
http://forums.pragprog.com/forums/aapsql

PGSS performs a normalization process for each query, removing specific
parameters and replacing their values with placeholder characters (question
marks).

The normalized query gets a query identifier (queryid), which represents a query
group. Similar normalized queries placed into the same group are grouped
together. Statistics are collected at the group level. PGSS presents the statistics
in a catalog view that you can enable access to for your database.

More than 40 fields of information are collected as statistics3 for PGSS. Some
of the information includes the number of calls for queries within that group
and their execution time min, max, mean, and standard deviation. These
statistics are cumulative, growing until less-used query groups are evicted
or statistics are reset. Rows and blocks that are accessed are included in the
stats, which can be used to help identify excessive IO.

Since you added PGSS to shared_preload_libraries in postgresql.conf and restarted
PostgreSQL, we’ll assume it’s ready to be used.

To make the system view available, connect to the rideshare_development database
as the postgres superuser:

psql -U postgres -d rideshare_development

From there, run the following statement to create the extension within the
rideshare schema:

CREATE EXTENSION IF NOT EXISTS pg_stat_statements
WITH SCHEMA rideshare;

Editing Config File

ALTER SYSTEM can modify shared_preload_libraries as an alternative
to editing postgresql.conf. This method generates a value in
postgresql.auto.conf that overrides the value in postgresql.conf.

To avoid confusion about where the active value originates,
skip ALTER SYSTEM and edit postgresql.conf directly.

You’ve now enabled PGSS and are ready to use it.

Using Query Statistics
Since Rideshare isn’t a running system, you’ll need to simulate application
activity so that query statistics can be calculated from it.

3. https://www.postgresql.org/docs/current/pgstatstatements.html

• Click HERE to purchase this book now. discuss

Using Query Statistics • 5

https://www.postgresql.org/docs/current/pgstatstatements.html
http://pragprog.com/titles/aapsql
http://forums.pragprog.com/forums/aapsql

Start the Rideshare server by running bin/rails server in your terminal.

In another terminal window, run the Rake task:

sh/simulate_app_activity.sh
bin/rails simulate:app_activity

As queries are received in PostgreSQL, PGSS places them into groups, gives
the group an identifier, and captures group-level statistics. PGSS tracks 5000
normalized queries (or query groups) by default, which can be increased by
setting pg_stat_statements.max.

The least-executed queries are discarded when the max is reached. To reset
the statistics, run SELECT rideshare.PG_STAT_STATEMENTS_RESET(); from psql.

Great. If you reset the statistics, run the simulation again. Once you’ve done
that, you should now have some stats to work with. Let’s use the stats to find
some of the ten slowest queries by mean execution time:

sql/ten_worst_queries.sql
SELECT

mean_exec_time,
calls,
query,
queryid

FROM pg_stat_statements
ORDER BY mean_exec_time DESC
LIMIT 10;

Great, you’re able to view the PGSS information in psql and see some of the
worst-performing queries.

Use pspg pager

pspg pager can be added to make the wide query results like the
ones from PGSS more legible. With pspg configured as the pager,
you’re able to navigate horizontally within psql.

Refer to the Development Guides4 repository or db/README.md in
Rideshare for instructions and usage.

Rideshare queries should be displayed in descending order. An example result
is shown as follows:

4. https://github.com/andyatkinson/development_guides

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/aapsql/code/sh/simulate_app_activity.sh
http://media.pragprog.com/titles/aapsql/code/sql/ten_worst_queries.sql
https://github.com/andyatkinson/development_guides
http://pragprog.com/titles/aapsql
http://forums.pragprog.com/forums/aapsql

sql/pg_stat_statements_result.sql
-[RECORD 8]--+---
mean_exec_time | 2878.5335836666663
calls | 3
query | SELECT COUNT(*) FROM "users" \

WHERE "users"."type" = $1 /*application:Rideshare*/
queryid | 5435614976858805274

In this example, we can see the mean_exec_time, the number of calls, the query
text, and the queryid.

While viewing statistics from psql works, you’d like to make this information
more accessible to your team.

How can you do that?

• Click HERE to purchase this book now. discuss

Using Query Statistics • 7

http://media.pragprog.com/titles/aapsql/code/sql/pg_stat_statements_result.sql
http://pragprog.com/titles/aapsql
http://forums.pragprog.com/forums/aapsql

