
Extracted from:

Ruby Performance Optimization
Why Ruby Is Slow, and How to Fix It

This PDF file contains pages extracted from Ruby Performance Optimization,
published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2015 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Ruby Performance Optimization
Why Ruby Is Slow, and How to Fix It

Alexander Dymo

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Michael Swaine (editor)
Potomac Indexing, LLC (index)
Liz Welch (copyedit)
Dave Thomas (layout)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-069-1
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—December 2015

https://pragprog.com
rights@pragprog.com

Analyze and Compare Measurements Using Statistics
Despite our best efforts to isolate our code from external factors, there will
still be a variation in our measurements when we run the same code over
and over again. Most of the time this won’t bother us. For example, if our
code takes from 10 to 15 seconds before optimization and from 1 to 2 seconds
after, we won’t need any statistics to tell us that our optimization worked.

But sometimes things do not look as certain. For example, say we optimized
the code and the execution time went down from the 120–150 ms range to
the 110–130 ms range. How can we be sure that the perceived optimization
of 10–20 ms is the result of our change and not some random factor?

To answer such questions, we’ll need to have some way of comparing perfor-
mance measurements without knowing the true performance values before
and after optimization. And statistics has the tools to do exactly that. Let me
show you how to use them.

Imagine we measured the performance of the same code n times before opti-
mization and n times after optimization. Now we want to compare these two.

Let me rephrase the same question in terms of statistics. I have two samples
of random independent variables x and y. The first is the performance before
optimization, the second is after. The size of my sample is n. And my question
is: Are these two samples significantly different?

If we knew the true values of performance before and after, the numerical
measure of the optimization effect would be just the difference between them.

And it turns out we can apply the same approach to the before and after
samples that have a degree of uncertainty in them. We can calculate an
interval within which we can confidently state the true optimization lies.
Statistics calls this interval the confidence interval. The size of that interval
will depend on the chosen level of confidence. In empirical science that level
is usually 95%, meaning we can be 95% sure that the true optimization will
lie inside that interval.

Let’s say we are subtracting the number after optimization from the number
before. So if the lower bound of the confidence interval is larger than zero,
then we can confidently state that the optimization worked. If the interval
starts with a negative number and ends with a positive number, then we can
say that our optimization does nothing. If the upper bound is lower than zero,
then our optimization made things worse.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/adrpo
http://forums.pragprog.com/forums/adrpo

So, it’s simple to reach conclusions once we find the confidence interval of
the optimization. The only remaining question is how to calculate one. Let
me show you the algorithm.

1. Estimate the mean of before and after performance measurements with
their averages:

y‾ =
∑i

y
i

nx‾ =
∑i

x
i

n

2. Calculate the standard deviation:

sy =
∑

i
(y
i
− y
‾
)2

n − 1
sx =

∑
i
(x
i
− x
‾
)2

n − 1

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/adrpo
http://forums.pragprog.com/forums/adrpo

3. Get the difference between before and after means. That would be the
mean of our optimization:

x‾ − y‾
4. Calculate the standard error of the difference, or in other words, the

standard deviation of the optimization:

s
x
‾
− y
‾

=
sx
2

n +
sy
2

n

5. Finally, obtain the 95% confidence interval of the optimization. That is
roughly two standard deviations away from its mean:

(x‾ − y‾) ± 2 * s x
‾
− y
‾

We want the lower bound of the interval to be larger than 0. So for example,
this interval proves we indeed optimized our code:

0.05 ± 0.02

The true difference between before and after values lies in the interval from
0.03 to 0.07 seconds. So in this imaginary case we optimized at least 30 ms.

It might seem that there’s no point in calculating the confidence interval if
the difference of the means is negative. But remember, we also want to know
whether the optimization made things worse. For example, consider the
intervals −0.05 ± 0.08 and −0.05 ± 0.02.

In both cases optimization didn’t work. But in the second case it made things
worse. The upper bound of the interval is –0.03. This means that with 95%
confidence we can state that the code slowed down after the change, and the
“optimization” must be reverted.

If you are more statistically inclined, you might frown at my confidence
interval analysis. Yes, that is a shortcut, but a useful one. Of course, if you
would like to be more rigorous, you can apply any of the hypothesis tests to
make sure the optimization was significant. If you took 30 measurements or
more, you can use the z-test. Otherwise, the t-test should work. I won’t talk
about these tests here because the confidence interval analysis should be
good enough.

OK. Enough of formulas. It’s time for an example.

The following calculates the product of the numeric array values in an
idiomatic Ruby way:

• Click HERE to purchase this book now. discuss

Analyze and Compare Measurements Using Statistics • 9

http://pragprog.com/titles/adrpo
http://forums.pragprog.com/forums/adrpo

chp7/before.rb
require 'benchmark'

data = Array.new(100000) { 10 }

GC.start
time = Benchmark.realtime do

product = data.inject(1) { |product, i| product * i }
end
puts time

As we already know from Chapter 2, the inject iterator can be bad for perfor-
mance. So we optimize by replacing it with each and calculating the product
ourselves.

chp7/after.rb
require 'benchmark'

data = Array.new(100000) { 10 }

GC.start
time = Benchmark.realtime do

product = 1
data.each do |value|

product *= value
end

end
puts time

Let’s run our before and after examples ten times each. That’s not enough to
make statistically sound conclusions, but we’ll still do this for the sake of
brevity. To make our statistics work we should take, as a rule of thumb, more
than 30 measurements.

After optimization:Before optimization:

$ for i in {1..10}; do \$ for i in {1..10}; do \
ruby chp7/after.rb; \ruby chp7/before.rb; \

donedone
1.46091907899244691.4879834910097998
1.50911725700134411.4997473749972414
1.47359147900715471.4694619810034055
1.44982136000180621.4671519770054147
1.4454834709758871.4394851910183206
1.464905330009061.4421958939929027
1.4349790799873881.528489818010712
1.45969901600619781.4666885799961165
1.47349738900084051.4510531660052948
1.45130411698482931.4629958330187947

• 10

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/adrpo/code/chp7/before.rb
http://media.pragprog.com/titles/adrpo/code/chp7/after.rb
http://pragprog.com/titles/adrpo
http://forums.pragprog.com/forums/adrpo

Just looking at the numbers it’s impossible to tell whether the optimization
worked. So let’s use statistics.

But before we do that, we need to round our numbers off. They contain too
many non-significant figures. Ruby’s Benchmark#realtime that we use for mea-
surements uses the operating system clock. That has microsecond precision
in most cases, so we’ll round our results to that.

Here are the rules for rounding to significant figures:

• If the first non-significant figure is a 5 followed by other non-zero digits,
round up the last significant figure (away from zero).

For example, 1.2459 as the result of a measurement that only allows for
three significant figures should be written 1.25.

• If the first non-significant figure is a 5 not followed by any other digits or
followed only by zeros, rounding requires a tie-breaking rule. For our
case, use the “round half to even” rule, which rounds to the nearest even
number.

For example, to round 1.25 to two significant figures, round down to 1.2.
To round 1.35, you should instead round up to 1.4.

• If the first non-significant figure is more than 5, round up the last signif-
icant figure.

• If the first non-significant figure is less than 5, just truncate the non-
significant figures.

Once you start rounding to significant figures, you must continue doing so
for all subsequent results of calculations.

Let’s follow the rules and round our measurements to significant figures.

After optimization:Before optimization:

1.4609191.487983
1.5091171.499747
1.4735911.469462
1.4498211.467152
1.4454831.439485
1.4649051.442196
1.4349791.528490
1.4596991.466689
1.4734971.451053
1.4513041.462996

Now let’s follow our algorithm to get the optimization mean and its confidence
interval.

• Click HERE to purchase this book now. discuss

Analyze and Compare Measurements Using Statistics • 11

http://pragprog.com/titles/adrpo
http://forums.pragprog.com/forums/adrpo

1. Averages of the before and after performance measurements:

x‾ =
1.487983 + 1.499747 + ⋯

10
= 1.471525

y‾ =
1.460919 + 1.509117 + ⋯

10
= 1.462332

2. The standard deviation of the measurements:

sx =
(1.487983 − 1.471525)2 + (1.499747 − 1.471525)2 + ⋯

9
= 0.027361

sy =
(1.460919 − 1.462332)2 + (1.509117 − 1.462332)2 + ⋯

9
= 0.020456

3. The mean of our optimization:

1.471525 − 1.462332 = 0.009193

4. The standard deviation of the optimization:

s
x
‾
− y
‾

=
0.0273612

10
+
0.0204562

10
= 0.010803

5. The 95% confidence interval of the optimization:

0.009193 ± 2 * 0.010803 = (−0.012413, 0.030799)

What’s the conclusion? With 95% confidence we can say that our optimization
didn’t work. Or, more exactly, we can’t tell whether or not it worked. The dif-
ference between the inject and each iterators was not significant enough for
this example.

Now let’s take another look at the optimization mean and the confidence
interval. The mean of our optimization was positive, about 9 ms. What inval-
idated our result is the standard deviation. Because it was too large, the 95%
confidence interval is around plus/minus 20 ms.

What if we could reduce the variability in measurements? That would decrease
the standard deviation, and, in turn, the confidence interval would be shorter.
Can it be that with more precise measurements the confidence interval would
lie above zero? Absolutely! That’s why we spent so much time in the first part
of this chapter to reduce the effect of various external and internal factors.

It is important to reduce the standard deviation of measurements as much
as possible. Otherwise, you won’t be able to compare your before/after results
at all.

• 12

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/adrpo
http://forums.pragprog.com/forums/adrpo

Now, in this example we are talking about milliseconds. In reality I was never
able to detect such optimizations in Ruby applications. But you should defi-
nitely aim for the order of tens of milliseconds—at the very least, the lower
hundreds.

You should now know enough techniques to reduce the dispersion in mea-
surements. But if you tried them all and the standard deviation is still too
high to compare results, try this: exclude outliers—measurements that are
too distant from each other. Mathematicians don’t like this approach, but it
can help if nothing else works.

The second run of my after optimization example measured 1.509117 seconds.
That was definitely an outlier. If I excluded it, both my mean and standard
deviation would go down significantly.

But don’t blindly exclude any results. There are a couple of statistically sound
techniques of data rejection. Make sure you learn them.2

OK, so now you know how to compare measurements before and after opti-
mization. Some pretty hardcore statistics are involved in that, and you prob-
ably think now, “why bother?” You’ll find the answer right away in the next
chapter. For now, let’s summarize what you’ve learned.

Takeaways
There’s only one way to prove that the optimization worked. You measure the
performance before and after, and you compare. But the devil is in the details.
Here’s what you need to take care of to get the measurements right.

1. Minimize external factors to increase measurement accuracy.

2. Make sure that GC behaves as predictably as possible to decrease vari-
ability in measurements.

3. Take as many measurements as practical to make statistical analysis
possible. A good default is 30.

4. Compare before and after numbers by calculating the confidence interval
of the optimization effect. Conclude that optimization worked only when
the lower bound of the confidence interval is higher than 0.

5. Try to reduce dispersion in measurements as much as possible. Otherwise
even with statistical tools you won’t be able to tell whether or not you
optimized the code.

2. https://en.wikipedia.org/wiki/Truncation_(statistics) and https://en.wikipedia.org/wiki/Winsorising

• Click HERE to purchase this book now. discuss

Takeaways • 13

https://en.wikipedia.org/wiki/Truncation_(statistics)
https://en.wikipedia.org/wiki/Winsorising
http://pragprog.com/titles/adrpo
http://forums.pragprog.com/forums/adrpo

Now we know how to do measurements, and how to compare them. But the
goal of optimization is not to measure it, nor even to make sure that the
optimized code indeed runs faster.

The real goal is to optimize and to make sure the slowdown never happens
again. How can you do that? After optimization you’ll need to measure the
performance after every change, and detect even the smallest regressions
from the achieved performance level.

If that smells like testing, you’re right: it is testing. Performance testing. And
that’s exactly what we’ll talk about in the next chapter.

• 14

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/adrpo
http://forums.pragprog.com/forums/adrpo

