
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Puzzle 3

Hack the Planet!

hack-the-planet.cpp
#include <iostream>

int getUserId() { return 1337; }

void restrictedTask1()
{

int id = getUserId();
if (id == 1337) { std::cout << "did task 1\n"; }

}

void restrictedTask2()
{

int id;
if (id == 1337) { std::cout << "did task 2\n"; }

}

int main() {
restrictedTask1();
restrictedTask2();

}

Guess the Output

Try to guess what the output is before moving to the next page.

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/akbrain/code/hack-the-planet.cpp
http://pragprog.com/titles/akbrain
http://forums.pragprog.com/forums/akbrain

The program has undefined behavior! But it might display the following output:

did task 1
did task 2

Discussion
The variable id in function restrictedTask2 has not been initialized and has an
indeterminate value. To use its value is undefined behavior. Anything can
happen when a program runs into undefined behavior; the C++ standard
makes no guarantees. Even the part of the program that happened before we
took id’s value is undefined!

However, if you run this program on your own computer, it will probably print
both did task 1 and did task 2, at least if you compile without optimizations. So
the value 1337 magically teleported from restrictedTask1 to restrictedTask2! How
could this happen?

Most systems use a stack for local variables. restrictedTask1 has a local variable
id, which it sets aside space for in its stack frame. As it happens, restrictedTask2
has the same number and types of local variables (one int), so its stack frame
layout will be identical to restrictedTask1’s.

When in main, the stack will have grown to a certain point—see the leftmost
illustration in the following figure. We then call restrictedTask1, the stack grows,
restrictedTask1 sets aside space in its stack frame for id, and initializes id to 1337.
Then control returns to main and the stack shrinks again.

⋮

 argc
 argvmain

 id=1337

main

restr1

 argc
 argv

 argc
 argv

main

⋮ ⋮⋮ ⋮ ⋮

 id=1337

main

restr2

 argc
 argv

⋮ ⋮

Next, we call restrictedTask2, the stack grows again, and restrictedTask2 sets aside
space in its stack frame for id but doesn’t initialize it. However, restrictedTask2’s
stack frame ends up in the exact same place as restrictedTask1’s stack frame.
The stack isn’t cleared between function calls, so the contents of restrictedTask2’s
stack frame will be exactly as restrictedTask1 left it, including the value 1337 in
the position of the local variable id. This causes id to be 1337 in both functions.

If you turn on optimizations, though, restrictedTask1 and restrictedTask2 are likely
to be inlined into main, and the stack is not used for these calls. You can try

C++ Brain Teasers • 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/akbrain
http://forums.pragprog.com/forums/akbrain

this yourself by compiling with -O2 (GCC/Clang) or /O2 (MSVC). On my x86_64
Linux machine, GCC prints did task 1 with -O2, whereas Clang segfaults. What
happens on your machine?

Avoiding Uninitialized Variables

To avoid nasal demons, security holes like this one, and garbage data in
general, you should always initialize your variables before using them. It’s
easy to slip up, but help is to be had! First of all, always compile with warn-
ings. GCC, Clang, and MSVC will warn you about this particular case, as will
tools like clang-tidy. But that’s only because it’s straightforward to prove that
id is uninitialized when it’s used. Often, we can’t know this until runtime.
This is where sanitizers come in.

Different sanitizers exist for different purposes, but all monitor your code at
runtime in various ways to detect problems that can’t be detected at compile
time. One such sanitizer is MemorySanitizer, which is designed to catch usages
of uninitialized memory. If we run this program with MemorySanitizer (pass
-fsanitize=memory as a compiler option to Clang), it’ll print something like this:

==1416660==WARNING: MemorySanitizer: use-of-uninitialized-value
#0 0x5603d43af5eb in restrictedTask2() example.cpp:14:9
#1 0x5603d43af64d in main example.cpp:19:5

It tells you that you’re using uninitialized memory and gives you a stack trace
to where it happened.

Sanitizers can make your program much slower, so you typically want separate
build configurations with sanitizers. A sanitizer can only detect an issue if
that issue actually occurs at runtime, though, so make sure to run as much
of your test suite as possible with this build.

Recommendations

• Always enable warnings. -Wall -Wextra -Wpedantic is a good start
on GCC/Clang, and /W4 on MSVC.

• If your IDE supports integrations with linting tools like clang-
tidy, turn them on. They can sometimes report issues like this
one before you even compile the code.

• Enable warnings as errors, at least in your Continuous Inte-
gration jobs, so you don’t overlook any warnings.

• Set up sanitizer builds for as many sanitizers as you can, and
run your tests with these builds.

• Click HERE to purchase this book now. discuss

Hack the Planet! • 5

http://pragprog.com/titles/akbrain
http://forums.pragprog.com/forums/akbrain

Further Reading
Undefined Behavior

https://en.cppreference.com/w/cpp/language/ub

Deep C (and C++) by Olve Maudal and Jon Jagger
https://www.slideshare.net/olvemaudal/deep-c

List of Sanitizers
https://github.com/google/sanitizers

C++ Brain Teasers • 6

• Click HERE to purchase this book now. discuss

https://en.cppreference.com/w/cpp/language/ub
https://www.slideshare.net/olvemaudal/deep-c
https://github.com/google/sanitizers
http://pragprog.com/titles/akbrain
http://forums.pragprog.com/forums/akbrain

