
Extracted from:

C++ Brain Teasers
Exercise Your Mind

This PDF file contains pages extracted from C++ Brain Teasers, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2023 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas

http://www.pragprog.com

C++ Brain Teasers
Exercise Your Mind

Anders Schau Knatten

The Pragmatic Bookshelf
Dallas, Texas

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and The Pragmatic Programmers, LLC was aware of a trademark claim, the designa-
tions have been printed in initial capital letters or in all capitals. The Pragmatic Starter
Kit, The Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf,
PragProg and the linking g device are trademarks of The Pragmatic Programmers,
LLC.

Every precaution was taken in the preparation of this book. However, the publisher
assumes no responsibility for errors or omissions, or for damages that may result
from the use of information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software
developers, please visit https://pragprog.com.

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2023 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 979-8-88865-051-6
Encoded using the finest acid-free high-entropy binary digits.
Book version: B1.0—November 8, 2023

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Puzzle 14

Aristotle’s Sum of Parts

aristotles-sum-of-parts.cpp
#include <iostream>
#include <type_traits>

int main()
{

char char1 = 1;
char char2 = 2;

// True if the type of char1 + char2 is char
std::cout << std::is_same_v<decltype(char1 + char2), char>;

}

Guess the Output

Try to guess what the output is before moving to the next page.

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/akbrain/code/aristotles-sum-of-parts.cpp
http://pragprog.com/titles/akbrain
http://forums.pragprog.com/forums/akbrain

The program displays the following output:

0

Discussion
I know, I know. This is supposed to be a fun book. But sometimes we need
to talk about sad topics like this.

As you’ve figured out by now, the type of char + char is unfortunately not char.
So what is it, then?

For many binary operations, such as +, -, *, /, >, ==, ̂ and more, the operands
must be of the same type. You don’t have to ensure that yourself, though;
C++ will take care of it. C++ is in fact very eager to implicitly convert between
types when you’re not looking, and this is one of the more confusing cases.
Meet the usual arithmetic conversions.

The usual arithmetic conversions are performed on the operands to these
operators to ensure both operands are of the same type. This common type
is also the type of the result. For instance, if you add a float and an int, the int
is first converted to a float, and the result is a float. And if you add a float and
a double, the float is first converted to a double, and the result is a double. Makes
sense so far.

The confusion starts when both operands are of integer types, especially if
they are of the same type. For instance, if you add a char and an int, the char
is first converted to an int, and the result is an int. It still makes sense. But
what if you add a char and a short? Rather than converting the char to a short,
both operands are converted to an int (usually, see below). And it gets worse:
If you add two chars, which are already of the same type, they are still converted
to a different type!

Let’s see what the usual arithmetic conversions do to our expression char1 +
char2. Since both operands are of integer types, a process known as integral
promotions is performed on both of them. The idea is to convert smaller
integer types to int or unsigned int before performing the arithmetic expression.
After converting both operands, we can now add them using regular int or
unsigned int addition and get an int or unsigned int as a result.

The rule for promoting a smaller integer type is that it can be converted to
an int if int can represent all the values of the smaller type; otherwise, it can

C++ Brain Teasers • 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/akbrain
http://forums.pragprog.com/forums/akbrain

be converted to an unsigned int. Does a char fit in an int? Usually, it does, but
that actually depends on the implementation. (I told you this is a sad story.)

A complicating factor here is that the sizes of fundamental types in C++ are
not fixed. An implementation can decide that int is 16 bits or 64 bits, and even
that char and long are of the same size. The only rules are:

• Each of signed char, short, int, long, and long long is at least as large as the
preceding type in the list.

• For each of the types in that list, an unsigned version exists, which has the
same size as the signed version.

There are also some minimum sizes defined:

Minimum widthType

8signed char
16short
16int
32long
64long long

On a typical 64 bit Linux, Windows or macOS system, int is 32 bits, whereas
long is 64 bits on Linux/macOS and 32 bits on Windows. But a conforming
implementation could equally well decide that all integer types are 64 bits.

In this puzzle, we’re interested in char in particular, but char is curiously
missing from all the lists above. What’s going on? char is a bit special in that
the implementation can choose whether to back it by signed char or unsigned char.
In either case, char is a distinct type. So char, signed char, and unsigned char are
actually three different types, and whether or not a plain char is signed is
implementation-defined!

Remember, we’re interested in whether all the values in char fit in an int, to
figure out whether our chars would be be converted to int or unsigned int. Normally
they all fit, so both operands of char1 + char2 would be converted to int, and the
result would also be an int.

But let’s say that the implementation has chosen char and int to both be 16
bits. Let’s also say that the implementation has chosen that char is unsigned.
The range of int is then -216-1 to 216-1-1, or -32768 to 32767, inclusive. The
range of char is 0 to 216-1, or 0 to 65535, inclusive. That is, half the chars don’t
fit in an int! On these systems, the operands of char1 + char2 would instead be
promoted to unsigned int and the result would also be an unsigned int.

• Click HERE to purchase this book now. discuss

Aristotle’s Sum of Parts • 5

http://pragprog.com/titles/akbrain
http://forums.pragprog.com/forums/akbrain

So the type of char1 + char2 can either be int or unsigned int. All we know for sure
is that it’s not char.

Further Reading
The Usual Arithmetic Confusions

https://shafik.github.io/c++/2021/12/30/usual_arithmetic_confusions.html

64-Bit Data Models
https://en.wikipedia.org/wiki/64-bit_computing#64-bit_data_models

Fundamental Types
https://timsong-cpp.github.io/cppwp/std20/basic.fundamental

Usual Arithmetic Conversions
https://timsong-cpp.github.io/cppwp/std20/expr.arith.conv

Integral Promotions
https://timsong-cpp.github.io/cppwp/std20/conv.prom

C++ Brain Teasers • 6

• Click HERE to purchase this book now. discuss

https://shafik.github.io/c++/2021/12/30/usual_arithmetic_confusions.html
https://en.wikipedia.org/wiki/64-bit_computing#64-bit_data_models
https://timsong-cpp.github.io/cppwp/std20/basic.fundamental
https://timsong-cpp.github.io/cppwp/std20/expr.arith.conv
https://timsong-cpp.github.io/cppwp/std20/conv.prom
http://pragprog.com/titles/akbrain
http://forums.pragprog.com/forums/akbrain

