Tt )
Pra] ematlc

ogrammers

C++ Brain Teasers

Exercise Your Mind

<
@
Q

Anders Schau Knatten

Foreword by Olve Maudal
Edited by Sandra Williams

This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.


https://www.pragprog.com

Aristotle’s Sum of Parts

aristotles-sum-of-parts.cpp
#include <iostream>
#include <type traits>

int main()

{
char charl = 1;
char char2 = 2;

// True if the type of charl + char2 is char
std::cout << std::is _same v<decltype(charl + char2), char>;

Guess the Output

Try to guess what the output is before moving to the next page.

« Click HERE to purchase this book now. discuss


http://media.pragprog.com/titles/akbrain/code/aristotles-sum-of-parts.cpp
http://pragprog.com/titles/akbrain
http://forums.pragprog.com/forums/akbrain

C++ Brain Teasers ® 4

The program displays the following output:

0

Discussion

I know, I know. This is supposed to be a fun book. But sometimes we need
to talk about sad topics like this.

As you've figured out by now, the type of char + char is unfortunately not char.
So what is it, then?

For many binary operations, such as +, -, *, /, >, ==, *, and more, the operands
must be of the same type. You don’t have to ensure that yourself, though;
C++ will take care of it. C++ is in fact very eager to implicitly convert between
types when you're not looking, and this is one of the more confusing cases.
Meet the usual arithmetic conversions.

The usual arithmetic conversions are performed on the operands to these
operators to ensure both operands are of the same type. This common type
is also the type of the result. For instance, if you add a float and an int, the int is
first converted to a float, and the result is a float. And if you add a float and a
double, the float is first converted to a double, and the result is a double. Makes
sense so far.

The confusion starts when both operands are of integer types, especially if
they are of the same type. For instance, if you add a char and an int, the char
is first converted to an int, and the result is an int. It still makes sense. But
what if you add a char and a short? Rather than converting the char to a short,
both operands are converted to an int (usually—see the following). And it gets
worse: if you add two chars, which are already of the same type, they're still
converted to a different type!

Let’s see what the usual arithmetic conversions do to our expression charl +
char2. Since both operands are of integer types, a process known as integral
promotions is performed on both of them. The idea is to convert smaller
integer types to int or unsigned int before performing the arithmetic expression.
After converting both operands, we can now add them using regular int or
unsigned int addition and get an int or unsigned int as a result.

The rule for promoting a smaller integer type is that it can be converted to
an int if int can represent all the values of the smaller type; otherwise, it can

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/akbrain
http://forums.pragprog.com/forums/akbrain

Aristotle’s Sum of Parts ® 5

be converted to an unsigned int. Does a char fit in an int? Usually it does, but that
depends on the implementation. (I told you this is a sad story.)

A complicating factor here is that the sizes of fundamental types in C++ are
not fixed. An implementation can decide that int is 16 bits or 64 bits, and even
that char and long are of the same size. The only rules are these:

e Each of signed char, short, int, long, and long long is at least as large as the preced-
ing type in the list.

e For each of the types in that list, an unsigned version exists, which has the
same size as the signed version.

Some minimum sizes are also defined:

Type Minimum width

signed char 8
short 16
int 16
long 32
long long 64

On a typical 64-bit Linux, Windows, or macOS system, int is 32 bits, whereas
long is 64 bits on Linux/macOS and 32 bits on Windows. But a conforming
implementation could equally well decide that all integer types are 64 bits.

In this puzzle, we're interested in char in particular, but char is curiously
missing from all the lists above. What's going on? char is a bit special in that
the implementation can choose whether to back it by signed char or unsigned char.
In either case, char is a distinct type. So char, signed char, and unsigned char are
actually three different types, and whether or not a plain char is signed is
implementation-defined!

Remember, we're interested in whether all the values in char fit in an int to
figure out whether our chars would be converted to int or unsigned int. Normally
they all fit, so both operands of charl + char2 would be converted to int, and the
result would also be an int.

But let’s say that the implementation has chosen char and int to both be 16
bits. Let’s also say that the implementation has chosen that char is unsigned.
The range of int is then =261 t0 21611, or -32768 to 32767, inclusive. The
range of char is O to 2'%.1, or 0 to 65535, inclusive. That is, half the chars don’t
fit in an int! On these systems, the operands of charl + char2 would instead be
promoted to unsigned int and the result would also be an unsigned int.

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/akbrain
http://forums.pragprog.com/forums/akbrain

C++ Brain Teasers ® 6

So the type of charl + char2 can either be int or unsigned int. All we know for sure
is that it’s not char.

Further Reading
The Usual Arithmetic Confusions

64-Bit Data Models
https://en.wikipedia.org/wiki/64-bit_computing#64-bit data_models

Fundamental Types
https://timsong-cpp.github.io/cppwp/std20/basic.fundamental

Usual Arithmetic Conversions
https://timsong-cpp.github.io/cppwp/std20/expr.arith.conv

Integral Promotions
https://timsong-cpp.github.io/cppwp/std20/conv.prom

« Click HERE to purchase this book now. discuss


https://shafik.github.io/c++/2021/12/30/usual_arithmetic_confusions.html
https://en.wikipedia.org/wiki/64-bit_computing#64-bit_data_models
https://timsong-cpp.github.io/cppwp/std20/basic.fundamental
https://timsong-cpp.github.io/cppwp/std20/expr.arith.conv
https://timsong-cpp.github.io/cppwp/std20/conv.prom
http://pragprog.com/titles/akbrain
http://forums.pragprog.com/forums/akbrain

