
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Preface
C++ is one of the largest and oldest programming languages in common use.
It’s famous for getting all the default behaviors wrong and for, as is the famous
example in the C++ community, making demons fly out of your nose.1 You
couldn’t have picked a better language for a programming brain teasers book!

Through 25 puzzles we’ll explore how C++ works under the hood, including
some of its important quirks. To get the most out of the book, you should
have some experience writing C++ and be familiar with the basics of the lan-
guage, including simple object-oriented programming and templates.

After finishing the book, you’ll have a deeper understanding of topics like
initialization, lifetimes, overload resolution, implicit conversions, inheritance,
undefined behavior, and more. But more importantly, I hope you’ll have gained
a sense of curiosity about how C++ really works, even if only a few of those
answers fit in a single book.

How to Use This Book
The book contains 25 C++ puzzles with answers and explanations. Most will be
well-formed programs, which the C++ standard guarantees the output of. Some
might, however, have a compilation error, and some might have undefined or
unspecified behavior. Your task is to figure out what happens when you compile
and run the program in each puzzle on a conforming C++ implementation.

Take this imaginary puzzle as an example. It’s a complete C++ program with
a main function:

#include <iostream>

int main()
{

std::cout << (1 < 2);
}

1. http://catb.org/jargon/html/N/nasal-demons.html

• Click HERE to purchase this book now. discuss

http://catb.org/jargon/html/N/nasal-demons.html
http://pragprog.com/titles/akbrain
http://forums.pragprog.com/forums/akbrain

Your task will be to read through the code and try to guess what the output will be
when the program is compiled and run. Always make sure you give it a proper go
before turning the page to look at the answer!

Please note a few technicalities:

• For brevity, I declare main with no parameters (no argc / argv) and don’t explicitly
return a value. These are all optional, and omitting them makes the puzzles
slightly easier to read.

• I use struct instead of class for all the puzzles. There’s no semantic difference—structs
just have public rather than private as the default visibility for members, so we don’t
have to put public: everywhere.

• As always in C++, bools are printed as 1 and 0 by default, not true and false.

The answer to the puzzle is that 1 is less than 2, so the program prints 1 (representing
true).

Getting the answers right is only half the fun, though. The other half is
understanding why it works the way it does. The puzzles are excuses to learn
more about how C++ works under the hood. I encourage you to read the
explanations thoroughly enough to understand them.

Undefined Behavior
Some puzzles might have undefined behavior. Undefined behavior is the term
used when something bad happens during the execution of a program, which
the compiler is unable to (or, more specifically, not required to) detect. For
instance, we might access an element past the end of an array, or an arith-
metic expression with signed integers might overflow. In these cases, the C++
standard imposes no restrictions on the implementation, and anything can
happen, including nasal demons. If a puzzle has undefined behavior, your
task is to identify the undefined behavior but also to guess what happens in
practice on a typical system. Does it actually make demons fly out of your
nose, or does something specific happen?

Again, let’s look at an example:

#include <iostream>
#include <limits>

int main()
{

std::cout << std::numeric_limits<int>::max() + 1;
}

Signed integer overflow in arithmetic is undefined behavior, so if you identified that,
you’re halfway there!

Preface • iv

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/akbrain
http://forums.pragprog.com/forums/akbrain

Making assumptions about what will happen in the case of undefined behavior is a
bad idea. So let’s do that next! For any puzzles with undefined behavior, the other
half of the puzzle is to figure out what would happen if you ran the program on your
computer. My computer uses two’s complement for signed integers (as do all conforming
implementations since C++20), and my CPU doesn’t generate an exception when I
overflow. So when I add 1 to the largest positive integer, the value simply wraps around
to the smallest negative integer. Since my system uses 32-bit ints, the program prints
-2147483648. You don’t need to know that exact value, but if you guessed it would print
the smallest negative integer, you solved it!

Don’t Do This at Home

Guessing or testing what happens in the case of undefined
behavior is an interesting exercise that can teach you more about
how C++ works on your platform. It might also enable you to rec-
ognize certain error patterns when you see them happening in
real programs. But do not make any assumptions about your real
programs based on what you find! Your assumptions might be
untrue on other computers, after upgrading your compiler, or
when you compile with different optimization settings. The compiler
is even allowed to remove error checking from your code if it can
prove that there’s undefined behavior!

Unspecified and Implementation-Defined Behavior
The C++ standard doesn’t specify everything strictly; it leaves some freedom
to the implementation. These are some examples:

• The specific sizes of integer types
• The order of evaluation of function arguments
• The order of initialization of global variables

This allows each implementation to make choices that make the most sense
on that particular system.

Most programs have some unspecified or implementation-defined behavior;
this is not a bug. And contrary to undefined behavior, demons will not fly out
of your nose. It’s just that different implementations might behave a bit dif-
ferently within a set of allowed behaviors.

If a puzzle has unspecified or implementation-defined behavior, try to also
guess what a typical behavior would be.

• Click HERE to purchase this book now. discuss

Unspecified and Implementation-Defined Behavior • v

http://pragprog.com/titles/akbrain
http://forums.pragprog.com/forums/akbrain

Playing Around with the Code
The most important part of learning anything programming related is to play
around with it yourself. The code from this book can be found on the book’s
home page at The Pragmatic Bookshelf.2 You can build it locally by opening
CMakeLists.txt in your favorite IDE or on the command line:

mkdir build
cd build
cmake ..
cmake --build .

The project contains one .cpp file per puzzle, each resulting in one binary,
both named the same as the corresponding puzzle in the book.

You can also try the code directly in your browser by pasting it into an online
compiler. I highly recommend Compiler Explorer,3 where you can choose from
and compare different compiler versions and architectures, try out different
optimization levels, and add other compiler flags, sanitizer options, and so
forth.

Let’s get started! Oh, and beware of the demons.

2. https://pragprog.com/titles/akbrain
3. https://godbolt.org

Preface • vi

• Click HERE to purchase this book now. discuss

https://pragprog.com/titles/akbrain
https://godbolt.org
http://pragprog.com/titles/akbrain
http://forums.pragprog.com/forums/akbrain

