
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Puzzle 2

String Theory

string-theory.cpp
#include <iostream>
#include <string>

void serialize(const void*) { std::cout << "const void*"; }

void serialize(const std::string&) { std::cout << "const string&"; }

int main()
{

serialize("hello world");
}

Guess the Output

Try to guess what the output is before moving to the next page.

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/akbrain/code/string-theory.cpp
http://pragprog.com/titles/akbrain
http://forums.pragprog.com/forums/akbrain

The program displays the following output:

const void*

Discussion
Why does passing a string to serialize cause the overload taking a void pointer
to be called rather than the overload taking a string?

When we’re calling a function with multiple overloads, the compiler uses a pro-
cess called overload resolution to figure out which one is the best fit. The compiler
does this by attempting to convert each function argument to the correspond-
ing parameter type for each overload. Some conversions are better than others,
and the best conversion is if the argument is already of the correct type.

All the overloads where all arguments can be successfully converted are added
to a set of viable functions. Then the compiler needs to figure out which
overload to select from this set. If an overload has a better conversion for at
least one argument and not a worse one for any of the other arguments, this
overload is deemed to be the best viable function and is selected by overload
resolution. If no overload is better than all the others, the call is ill-formed
and fails to compile.

Have a look at this example:

serialize(int, int); // 1

serialize(float, int); // 2

Given these two overloads, suppose you call serialize like this:

serialize(1, 2);

Both overloads of serialize are viable. But the first overload has a better conversion for
the first argument (int → int is better than int → float) and not a worse conversion for the
second argument (int → int for both overloads), so it is selected by overload resolution
as the best viable function.

The puzzle is a bit simpler than this example since both overloads of serialize
only have one parameter. The first takes a const void * and the second takes a
const std::string&. What does the conversion look like for each of the overloads?

C++ Brain Teasers • 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/akbrain
http://forums.pragprog.com/forums/akbrain

std::string is a class in the standard library. It’ll typically allocate memory on
the heap (unless the string is very small) and allows the string to grow or be
otherwise modified at runtime.

However, the string "hello world" is not a std::string but a simple string literal.
String literals are plain C-style arrays of chars which get baked into your
binary by the linker and cannot be modified at runtime. A string literal has
the type “array of n const char.” "hello world" has 11 characters plus a terminating
\0, so its type is “array of 12 const char.”

Since the argument "hello world" is neither a const void* nor a std::string but an
“array of 12 const char,” a conversion is needed for both overloads. If an implicit
conversion exists from the argument to the parameter type, that overload is
added to the set of viable functions. Otherwise, the overload is ignored.

Let’s examine the first overload and see if “array of 12 const char” can be
implicitly converted to const void *. The first thing that happens is that the array
gets converted to a pointer. Any “array of N T” can be converted to a “pointer
to T” pointing to the first element. So now our “array of 12 const char” has turned
into a “pointer to const char.’’

Next, any “pointer to cv T” (where cv means const, volatile, const volatile, or none
of these) can be converted to “pointer to cv void.” So now our “pointer to const
char” has turned into a “pointer to const void,” which is exactly what the first
overload expects.

Notice that no constructors or conversion functions were involved in this
conversion sequence. This means it’s a standard conversion sequence and
not a user-defined conversion sequence. That gets important later.

Let’s now examine the second overload, and see if our “array of 12 const char”
can be converted to a “reference to const std::string.” std::string has a constructor
std::string(const char* s), which we can use. First, we convert the “array of 12 const
char” to a “pointer to const char” as we did above. Then we pass this to the
std::string constructor and get a std::string back, containing a copy of the string
literal. The const std::string& parameter can bind directly to our std::string argument.

Notice that we had to use a constructor for this. This means it’s a user-defined
conversion sequence and not a standard conversion sequence. It doesn’t
matter that std::string is a standard library type; it still counts as user-defined.
The rules are the same for you and the standard library.

• Click HERE to purchase this book now. discuss

String Theory • 5

http://pragprog.com/titles/akbrain
http://forums.pragprog.com/forums/akbrain

Now the compiler has found a valid conversion sequence from our “array of
12 const char” to the parameter type of each overload and has to figure out which
sequence is best:

const char[12]

Conversion sequence for void serialize(const void*)

Conversion sequence for void serialize(const std::string&)

const char *

const char * std::string User defined conversion,
new std::string object created!

const char[12] const void * Standard conversion,
no new objects created

We only require a standard conversion sequence (top), to call the const void*
overload. To call the std::string overload, we need a user defined conversion
sequence (bottom), which involves creating a new temporary std::string object.
A standard conversion sequence is always better than a user-defined conver-
sion sequence, so the first overload gets called, and const void* is printed.

Further Reading
Overload Resolution

https://en.cppreference.com/w/cpp/language/overload_resolution

std::string
https://en.cppreference.com/w/cpp/string/basic_string

String Literal
https://en.cppreference.com/w/cpp/language/string_literal

C++ Brain Teasers • 6

• Click HERE to purchase this book now. discuss

https://en.cppreference.com/w/cpp/language/overload_resolution
https://en.cppreference.com/w/cpp/string/basic_string
https://en.cppreference.com/w/cpp/language/string_literal
http://pragprog.com/titles/akbrain
http://forums.pragprog.com/forums/akbrain

