
Extracted from:

C++ Brain Teasers
Exercise Your Mind

This PDF file contains pages extracted from C++ Brain Teasers, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2023 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas

http://www.pragprog.com

C++ Brain Teasers
Exercise Your Mind

Anders Schau Knatten

The Pragmatic Bookshelf
Dallas, Texas

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and The Pragmatic Programmers, LLC was aware of a trademark claim, the designa-
tions have been printed in initial capital letters or in all capitals. The Pragmatic Starter
Kit, The Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf,
PragProg and the linking g device are trademarks of The Pragmatic Programmers,
LLC.

Every precaution was taken in the preparation of this book. However, the publisher
assumes no responsibility for errors or omissions, or for damages that may result
from the use of information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software
developers, please visit https://pragprog.com.

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2023 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 979-8-88865-051-6
Encoded using the finest acid-free high-entropy binary digits.
Book version: B1.0—November 8, 2023

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Puzzle 2

String Theory

string-theory.cpp
#include <iostream>
#include <string>

void serialize(const void*) { std::cout << "const void*"; }

void serialize(const std::string&) { std::cout << "const string&"; }

int main()
{

serialize("hello world");
}

Guess the Output

Try to guess what the output is before moving to the next page.

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/akbrain/code/string-theory.cpp
http://pragprog.com/titles/akbrain
http://forums.pragprog.com/forums/akbrain

The program displays the following output:

const void*

Discussion
Why does passing a string to serialize cause the overload taking a void pointer
to be called, rather than the overload taking a string?

When we’re calling a function with multiple overloads, the compiler uses a
process called overload resolution to figure out which one is the best fit. The
compiler does this by attempting to convert each function argument to the
corresponding parameter type for each overload. Some conversions are better
than others, and the best conversion is if the argument is already of the correct
type.

All the overloads where all arguments can be successfully converted are added
to a set of viable functions. Then the compiler needs to figure out which
overload to select from this set. If an overload has a better conversion for at
least one argument and not a worse one for any of the other arguments, this
overload is deemed to be the best viable function and selected by overload
resolution. If no overload is better than all the others, the call is ill-formed
and fails to compile.

For example:

serialize(int, int); // 1

serialize(float, int); // 2

Given these two overloads, when you call serialize like this:

serialize(1, 2);

Both overloads of serialize are viable. But the first overload has a better conversion for
the first argument (int → int is better than int → float) and not a worse conversion for
the second argument (int→ int for both overloads), so it is selected by overload resolution
as the best viable function.

The puzzle is a bit simpler than this example since both overloads of serialize
only have one parameter. The first takes a const void * and the second takes a
const std::string&. What does the conversion look like for each of the overloads?

C++ Brain Teasers • 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/akbrain
http://forums.pragprog.com/forums/akbrain

std::string is a class in the standard library. It will typically allocate memory on
the heap (unless the string is very small) and allows the string to grow or be
otherwise modified at run-time.

However, the string "hello world" is not a std::string, but a simple string literal.
String literals are plain C-style arrays of chars which get baked into your
binary by the linker and can not be modified at run-time. A string literal has
the type “array of n const char.” "hello world" has 11 characters plus a terminating
\0, so its type is “array of 12 const char.”

Now we need to figure out which overload of serialize, if any, is the best viable
function. Since the argument "hello world" is neither a const void* nor a std::string,
but an “array of 12 const char,” the compiler must first figure out which of the
two overloads are at all viable. If an implicit conversion exists from the argu-
ment to the parameter type, that overload is added to the set of viable func-
tions. Otherwise, the overload is ignored.

Let’s examine the first overload, and see if “array of 12 const char” can be
implicitly converted to const void *. The first thing that happens is that the array
gets converted to a pointer. Any “array of N T” can be converted to a “pointer
to T” pointing to the first element. So now our “array of 12 const char” has turned
into a “pointer to const char.’’

Next, any “pointer to cv T” (where cv means const, volatile, const volatile or neither)
can be converted to “pointer to cv void.” So now our “pointer to const char” has
turned into a “pointer to const void,” which is exactly what the first overload
expects.

Notice that no constructors or conversion functions were involved in this
conversion sequence. This means it’s a standard conversion sequence and
not a user-defined conversion sequence. That gets important later.

Let’s now examine the second overload, and see if our “array of 12 const char”
can be converted to a “reference to const std::string.” std::string has a constructor
std::string(const char* s), which we can use. First, we convert the “array of 12 const
char” to a “pointer to const char” as we did above. Then, we pass this to the
std::string constructor and get a std::string back, containing a copy of the string
literal. The const std::string& parameter can bind directly to our std::string argument.

Notice that we had to use a constructor for this. This means it’s a user-defined
conversion sequence and not a standard conversion sequence. It does not
matter that std::string is a standard library type; it still counts as user-defined.
The rules are the same for you and the standard library.

• Click HERE to purchase this book now. discuss

String Theory • 5

http://pragprog.com/titles/akbrain
http://forums.pragprog.com/forums/akbrain

Now the compiler has found a valid conversion sequence from our “array of
12 const char” to the parameter type of each overload and has to figure out which
sequence is best:

const char[12]

Conversion sequence for void serialize(const void*)

Conversion sequence for void serialize(const std::string&)

const char *

const char * std::string User defined conversion,
new std::string object created!

const char[12] const void * Standard conversion,
no new objects created

To call the const void* overload, we only require a standard conversion sequence
(top). To call the std::string overload, we need a user defined conversion sequence
(bottom), which involves creating a new temporary std::string object. A standard
conversion sequence is always better than a user-defined conversion sequence,
so the first overload gets called, and const void* is printed.

Further Reading
Overload Resolution

https://en.cppreference.com/w/cpp/language/overload_resolution

std::string
https://en.cppreference.com/w/cpp/string/basic_string

String Literal
https://en.cppreference.com/w/cpp/language/string_literal

C++ Brain Teasers • 6

• Click HERE to purchase this book now. discuss

https://en.cppreference.com/w/cpp/language/overload_resolution
https://en.cppreference.com/w/cpp/string/basic_string
https://en.cppreference.com/w/cpp/language/string_literal
http://pragprog.com/titles/akbrain
http://forums.pragprog.com/forums/akbrain

