
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Designing a Simple Chat Protocol
Having a well-defined protocol is a must in network systems, and you’ll
stumble upon a lot of these sorts of specifications when working with existing
networking code. If you’re curious, there are a few “official” protocol specifica-
tions that you can check out to get an idea of what a real-world, detailed
protocol spec looks like:

• The Redis Serialization Protocol (RESP) specification1

• The spec for the HPACK header-serialization protocol2 used in HTTP/2
• The header format of TCP itself (section 3 of the original spec3 from 1981)

In this section, we’ll come up with our simple chat protocol and talk a bit
more about protocols in general. One of the most important distinction we
can make between protocols is the one between binary and textual protocols,
so let’s kick off with that.

Binary Protocols and Textual Protocols
A binary protocol is generally characterized by encoding information in bytes
or bits, without paying attention to whether messages in the protocol can be
read as text by humans. For example, a protocol that uses the first byte of a
message to signal the length of the rest of the message is a binary protocol.
The reason is that many possible values of that byte, such as 0, don’t represent
valid characters in most encodings. Real-world examples of binary protocols
are HTTP/2, the protocol used by the Cassandra database,4 the Protobuf
serialization format,5 or the underlying data serialization format used by TCP
itself (which we talk about in Appendix 3, TCP Protocol Details, on page ?).

Textual protocols are protocols that are meant to be readable by machines
and humans alike. Bytes of information are interpreted through a specified
encoding, most commonly ASCII.6 One of the most famous examples of such
a protocol is JSON.7 JSON is a data serialization format that comes from the
syntax of JavaScript objects. Here’s an example of a JSON object:

{
"type": "user_message",

1. https://redis.io/docs/reference/protocol-spec/
2. https://http2.github.io/compression-spec/compression-spec.html
3. https://www.ietf.org/rfc/rfc793.txt
4. https://cassandra.apache.org/_/index.html
5. https://protobuf.dev
6. https://en.wikipedia.org/wiki/ASCII
7. https://www.json.org/json-en.html

• Click HERE to purchase this book now. discuss

https://redis.io/docs/reference/protocol-spec/
https://http2.github.io/compression-spec/compression-spec.html
https://www.ietf.org/rfc/rfc793.txt
https://cassandra.apache.org/_/index.html
https://protobuf.dev
https://en.wikipedia.org/wiki/ASCII
https://www.json.org/json-en.html
http://pragprog.com/titles/alnpee
http://forums.pragprog.com/forums/alnpee

"contents": "Hello! My name is \"Bernaco\""
}

You can read this example because JSON objects are readable by humans.
They also have elements, such as brackets ({}) and quotes ("), that allow
machines to correctly parse the data that they encode. In this example, we
can see how this requirement sometimes leads to having to escape characters
in order for the data to remain possible to parse (\"). Another well-known
example of a textual protocol is HTTP/1.1.

Which kind of protocol should you choose, textual or binary? As always, the
best answer we can give to this sort of question is: “it depends.” One of the
main factors to take into consideration is performance and size.

Well-designed binary protocols are inevitably more space efficient when seri-
alizing data, since they can use a granularity of a single bit to encode infor-
mation. This is quite common in real-world protocols, such as HTTP/2 or
DNS. In general, serialization and deserialization programs are also faster
and more memory efficient when dealing with binary data, since it’s easier to
make information such as the size of data part of the protocol itself. The
downside of binary protocols is that they’re mostly unintelligible for humans.
For example, if you happen to intercept an HTTP/2 request and you don’t
have software to help you make sense of it, chances are you’ll just be looking
at a bunch of gibberish-looking bytes.

Textual protocols, in contrast, are easy for humans to read and easy to write
by hand. We’re willing to bet that many readers have written at least one
JSON object by hand throughout their careers. This readability comes at the
expense of speed and space efficiency. For example, in JSON you have to
escape some characters (adding to the size of the data) and have to parse
whole objects in order to know where that object ends.

Endianness in Binary Protocols

Endiannessa is the order in which bytes are interpreted. For example, take the binary
<<0, 1>>. When interpreted from right to left (least significant byte on the right), these
bytes encode the number 256 in base ten. This is called “big endianness”. However,
if interpreted from left to right, these bytes represent the number 1 (“little endianness”).

When working with binary protocols, the protocol specification has to clearly define
the endianness used in the protocol. Textual protocols don’t generally have to clarify
this.

a. https://en.wikipedia.org/wiki/Endianness

• 4

• Click HERE to purchase this book now. discuss

https://en.wikipedia.org/wiki/Endianness
http://pragprog.com/titles/alnpee
http://forums.pragprog.com/forums/alnpee

Now, let’s figure out which type of protocol is the right choice for our chat. A
possible choice would be JSON itself. It would mean we don’t need to come
up with the serialization layer itself, but only with the semantics of the protocol
(such as which kinds of messages to support). However, by using a binary
protocol you’ll have a chance to learn more about how networks often operate
and are designed. So, let’s try to come up with a binary protocol that makes
sense.

Specifying Our Chat Binary Protocol
When designing a protocol, start from the requirements of the protocol. Mes-
sages in our binary protocol need to encode different information based on
their type. For example, broadcasted messages have to carry information
about the contents of the message, while handshake messages only have to
carry the username. This already seems to suggest that we need to attach a
type to each message. We know we’re not going to have too many different
kinds of messages, so we’ll use a single byte to encode the message type. A
byte can encode 255 different values, so we’ll have plenty to use.

Representing Bytes

Let’s talk about how to generally represent bytes, since that’s an important thing to
do when discussing binary protocols. Some possibilities are representing a byte with
the value of its bits, in decimal base, or in hexadecimal base. The binary base tends
to be hard to read for humans due to long sequences of digits. The decimal base
works, but it leads to some nasty cases: for example, the biggest single byte has value
255, which means that we cannot use all the three digits (which would go up to 999).

It seems that the most common representation of single bytes is the hex notation,
denoted as two digits in hexadecimal base. That works out great, because two hex-
adecimal digits can represent the same values as eight bits (a byte). If you want to
make sure of that, you can verify that 162 (sixteen possible values with two digits) is
the same as 28 (two possible values with eight digits). For example, you can represent
the byte with value 10110111 (in base two) with the hexadecimal value b7. It’s common
to prefix the hexadecimal value with the symbols 0x. We’ll do that throughout the
book. So, for example, we’ll write out the byte in the previous example as 0xb7.

Then, we’ll need to encode strings of text. A common way to do that in binary
protocols is to use a few bytes to encode the length of the string, followed by
the contents of the string itself. Let’s go with two bytes to encode the length
in our case. It’s more than enough, since it lets us encode strings of up to
65536 bytes. We also need to specify the encoding of the contents of the string
itself, otherwise they’d just be a bunch of bytes without meaning. We’ll go

• Click HERE to purchase this book now. discuss

Designing a Simple Chat Protocol • 5

http://pragprog.com/titles/alnpee
http://forums.pragprog.com/forums/alnpee

with UTF-8,8 the most common standard for encoding and one that Elixir
supports well. To get an idea of how we’d encode a string, the string "hello"
would be encoded as in the following image.

This encoding works well for strings with Unicode codepoints that span more
than one byte as well. For example, the character ∞ takes a whopping three
bytes to be represented (as 0xe2 0x88 0x9e), as you can see in the following
image.

In binary protocols, some messages are unidirectional (client to server or
server to client), while others are bidirectional, meaning that they can be sent
and interpreted by both clients and servers. We’ll have one of each.

Getting the Byte Size and Hex Representation of a Binary

You can use the Kernel.byte_size/1 function in Elixir or erlang:byte_size/1
function in Erlang to get the number of bytes inside a binary,
regardless of how the binary is supposed to be interpreted. This
is useful when working with Unicode strings, which is how Elixir
represents strings by default. For example, in Elixir byte_size("∞")
returns 3. In Erlang, you would do byte_size(<<"∞"/utf8>>).

Now, say you have a binary and want to get its byte-by-byte hex
representation. In Elixir, you can use the base: :hex option when
inspecting the binary. For example, inspect("∞", base: :hex) will return
the string "<<0xE2, 0x88, 0x9E>>". This is only available for Elixir. In

8. https://en.wikipedia.org/wiki/UTF-8

• 6

• Click HERE to purchase this book now. discuss

https://en.wikipedia.org/wiki/UTF-8
http://pragprog.com/titles/alnpee
http://forums.pragprog.com/forums/alnpee

Getting the Byte Size and Hex Representation of a Binary

Erlang, you’ll have to write some custom code to do that. You can
find ideas on how to do that on the Internet.9

Now that we have the building blocks for our binary protocols, let’s go ahead
and define each type of message that clients can send to servers. We’ll start
out with register messages. These are unidirectional messages that clients
must send as the first message after establishing a connection. When the
server receives this type of message, it must identify that connection through
the specified username. Usernames must be unique across connected clients.
The type byte for this message has value 0x01. Following that, we have a single
string containing the username. Here’s a visual representation.

Next up we have broadcast messages. These are bidirectional messages. Their
type byte has value 0x02, and it’s followed by a string representing the “from”
username of the message, and then one more string with the contents of the
message itself. When a client sends a broadcast message to the server,
from_username must be an empty string. When the server sends a broadcast
message to clients, from_username will be the username of the sender of the
broadcast message, or an empty string if the broadcast message comes from
the server itself. Keeping the from_username field empty sometimes lets us reuse
this message type and make it bidirectional, as opposed to having to create
two separate types. The visual representation of the message looks like this:

9. https://stackoverflow.com/questions/3768197/erlang-ioformatting-a-binary-to-hex

• Click HERE to purchase this book now. discuss

Designing a Simple Chat Protocol • 7

https://stackoverflow.com/questions/3768197/erlang-ioformatting-a-binary-to-hex
http://pragprog.com/titles/alnpee
http://forums.pragprog.com/forums/alnpee

We got our messages down. The following image shows you a visual represen-
tation of an example session, in which a client connects, registers, and then
broadcasts a message.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/alnpee
http://forums.pragprog.com/forums/alnpee

Okay, we have designed our first protocol. We started by looking at the differ-
ence between textual and binary protocols. Then, we came up with a binary
protocol for our chat server. The binary protocol we got have here is simple,
but that’s a good thing! It means it will be easy to reason about and easy to
implement. Let’s move one to writing code for our protocol.

• Click HERE to purchase this book now. discuss

Designing a Simple Chat Protocol • 9

http://pragprog.com/titles/alnpee
http://forums.pragprog.com/forums/alnpee

