
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

CHAPTER 8

I’d love to make a joke about UDP, but I’m afraid you wouldn’t
get it.

 ➤ Someone on the Internet

Same Layer, Different Protocol: Introducing
UDP

TCP is the right choice for most applications. After all, the backbone of
everything we do on the Internet is TCP: the web, instant messaging,
streaming, downloads, and whatnot. But there are times when we need more
control. Maybe you just need to get as “close to the network” as you can. Or
maybe you don’t need persistent connections, or network packets to be always
delivered in order (or at all). That’s when we reach for UDP.

UDP (User Datagram Protocol) is a simple and efficient network protocol that
is often used as the foundation of more complex applications. TCP is like a
cake mix: you throw in a few wet ingredients like eggs and milk, and you’ve
got yourself a nice cake. It’s hard to mess up the process, as the cake mix
gives you nice “guarantees”. UDP is like baking completely on your own. You
have more control over the quality of each ingredient and their proportions,
but it requires you to do a lot more.

Reach for UDP only when you’ll absolutely need to squeeze everything out of
the performance of the protocol, and when you can get away with fewer
guarantees. For example, video-conferencing protocols usually rely on UDP.
This makes sense for that use case since missing or out of order frames can
be dealt with—choppier video streams or artifacts, but you still get a usable
experience for the user.

We’ll start our UDP chapter with a quick review of the protocol. Then, you’ll
start working on a simple but nifty little application that relies on UDP. We’ll
build a rudimentary metric-collection system, and then we’ll iterate on it,
gradually adding features as we go. Let’s get started.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/alnpee
http://forums.pragprog.com/forums/alnpee

The Basics of the Protocol
In this section, you’ll learn about the basics of UDP. We’ll use Erlang’s stan-
dard library to have two UDP peers exchange some packets, just to dip our
feet in the ocean. Rather than learning about UDP from scratch, let’s explore
this protocol by comparing it to TCP and looking at the differences.

UDP stands for User Datagram Protocol. As a protocol, it sits at the same OSI
layer as TCP, that is, the transport layer (layer 4). For a quick guide to the
OSI model, see Appendix 1, The OSI Model, on page ?. Just like TCP, UDP
is also responsible for packaging, routing, and carrying bytes across the net-
work. It routes those packets to the right peers.

The biggest difference between UDP and TCP is that UDP is stateless, while
TCP is stateful. TCP connections are persistent and represent a stateful rela-
tionship between the two peers. UDP, on the other hand, doesn’t even really
deal with the concept of a “connection”. UDP relies on sockets and their
addresses to send and receive data. When you open a UDP socket, all you’re
doing is getting a handle on the UDP address and port combination. To send
data to another UDP socket, you just have to specify its address and port
combination. This all sounds a bit abstract, but we’ll get our hands dirty
soon. First, let’s look at quick recap of the differences between the two proto-
cols, in the next table.

UDPTCP

No connectionStateful connection

No delivery guaranteesPackets cannot get lost

No order guaranteesPackets are always delivered in order

One key characteristic of UDP, which is a product of its statelessness, is that
there are just about no guarantees. At all. You can’t know whether your
socket is connected or not. You can’t know if the data you send reaches its
destination. If the data you send makes it to its destination, you can’t assume
that it reached it in the order it was sent. But there’s a reason for all this:
efficiency. Thanks to the lack of any handshake to initiate connections, and
thanks to not having to keep track of sent and received packets—for ordering
purposes—UDP stays fast and lightweight. Like most things in the software
world, you give something up (guarantees) to get something back (efficien-
cy)—it’s all about compromises and use cases. We’ll explore how to deal with
this lack of guarantees throughout this entire chapter. For now, let’s dive in
and look at some UDP in action.

• 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/alnpee
http://forums.pragprog.com/forums/alnpee

Sending Some Data via UDP
Start off by hopping into a terminal and starting a simple UDP server through
netcat,1 a networking utility that ships with most Unix-based operating sys-
tems. The command shown next starts a UDP echo server, that is, a server
which receives packets and prints them back on the terminal.

> nc -u -l 9001

The -u flag tells netcat to use UDP instead of TCP (TCP is the default). -l tells
it to listen for packets (you can also use netcat as a client). Lastly, 9001 spec-
ifies the port we want to listen on. You won’t see any output when you run
this command, as this server hasn’t received any data yet. Let’s fix that by
sending it some data from the BEAM. Fire up an IEx session and send the
bytes "hello" to the netcat server using the commands shown next.

iex> {:ok, socket} = :gen_udp.open(9002, mode: :binary)
iex> :gen_udp.send(socket, ~c"localhost", 9001, "hello")
:ok

If you kept an eye on the running nc command, you should have seen the
string hello printed on the terminal. So, something must be working!

Let’s unpack what we just saw. It’s our first encounter with the gen_udp mod-
ule.2 As you might assume, it’s the UDP counterpart to the gen_tcp module
that we’ve used extensively in the previous chapters. It also ships with the
Erlang standard library, and exposes an API that closely resembles the gen_tcp
one.

The first function we used is :gen_udp.open/1. This function returns a UDP
socket. There’s an important difference between UDP sockets and TPC sockets.

1. https://en.wikipedia.org/wiki/Netcat
2. https://www.erlang.org/doc/man/gen_udp.html

• Click HERE to purchase this book now. discuss

The Basics of the Protocol • 5

https://en.wikipedia.org/wiki/Netcat
https://www.erlang.org/doc/man/gen_udp.html
http://pragprog.com/titles/alnpee
http://forums.pragprog.com/forums/alnpee

In TCP, a socket needs a peer to connect to. In UDP, however, a socket lives
a life of its own, as there is no concept of “established connection”. When you
open a UDP socket, what you’re really doing is hooking into the OS UDP
socket listening on the given port. Here, we chose port 9002. :gen_udp.open/2 is
the equivalent of :gen_tcp.connect/4, but the name difference is a clear indication
of what we just talked about.

We can send UDP data to another UDP socket through the socket we opened.
That’s what we do with the call to :gen_udp.send/4. As you can see in the IEx
session, we specify a host-and-port combination right in the send/4 call, without
the need for connecting first. If we wanted to send data to another UDP peer,
we could do it through the same socket. All we’d need to do is use a different
host-and-port combination. This is not possible in TCP, where a specific
socket is permanently connected to a specific peer.

The next two figures show the difference between TCP and UDP when it comes
to the flow of opening a socket and sending data. First, in the next figure, you
can see the TCP flow that you know by now: the client initiates the connection,
the server accepts the connection, and the new socket is opened and can be
used to exchange data.

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/alnpee
http://forums.pragprog.com/forums/alnpee

Compare that with the next figure, which shows what you can do with UDP
sockets. The first step is to open the UDP socket on port 9002. That’s also the
only step when it comes to opening the socket! Once that socket is open, we
can use it to send data to any UDP socket on any other peer. The numbers
in the next figure show you the order of operations, but the only one that
really matters is that opening the socket comes first.

Receiving Data
There’s even more to our humble UDP socket. It doesn’t just send data, it
also receives data. To see that in action, let’s switch the role of netcat, and
use it to send some data to our open Erlang socket. Leave the previous IEx
session running, and exit out of the nc command that you used before—a
Ctrl-c will do. Then, run the following command to open a netcat session
where you’ll be able to send data to our UDP socket, and type the words hello
and world, both followed by Return .

> nc -u 127.0.0.1 9002
hello
world

We just sent the strings hello\n and world\n to our Erlang UDP socket. In the
IEx session, you can use the flush() helper3 to display the messages received

3. https://hexdocs.pm/iex/IEx.Helpers.html#flush/0

• Click HERE to purchase this book now. discuss

The Basics of the Protocol • 7

https://hexdocs.pm/iex/IEx.Helpers.html#flush/0
http://pragprog.com/titles/alnpee
http://forums.pragprog.com/forums/alnpee

by the shell process. We opened the UDP socket with :gen_udp.open/1, which
defaults to a socket in active mode (see Active and Passive Modes for Sockets,
on page ?): that’s why the shell process gets the data delivered as Erlang
messages.

iex> flush()
{:udp, #Port<0.3>, {127, 0, 0, 1}, 63827, "hello\n"}
{:udp, #Port<0.3>, {127, 0, 0, 1}, 63827, "world\n"}

The #Port<...> number might be different for you, as might the fourth element
of the tuple, which is the source port. The messages you see here look some-
what like the {:tcp, socket, data} messages we got used to in previous chapters.
However, there’s more information here. The structure of these new messages
is:

{:udp, udp_socket, source_address, source_port, data}

When comparing this to the {:tcp, socket, data} messages that the :gen_tcp module
uses, the only two additional elements are source_address and source_port. Why
include those in the message? That’s because the UDP socket is stateless
and not connected to any particular address and port. This means that it can
receive data from any other UDP socket. You can verify that by exiting out of
netcat (again, just Ctrl-c), starting it again, and sending more data.

> nc -u 127.0.0.1 9002
more data

If you check the received messages in IEx now, you’ll see a new :udp message
but with a different source port—64927 here instead of the old 63827.

iex> flush()
{:udp, #Port<0.3>, {127, 0, 0, 1}, 64927, "more data\n"}

Once again, the source_port will likely look different for you. That’s just the port
that the OS allocates to the running netcat command. The second element
of the tuple, though, will look exactly the same as the previous messages,
showing you that the UDP socket that received the data is the same.

In this section, you got a general idea of how UDP works, especially when
compared against TCP. UDP is stateless and not connection oriented. Sending
and receiving data works similar to how it works for TCP, but it accounts for
the socket being stateless: you have to specify where to send data every time,
and incoming data is “tagged” with its source peer. Now that we’ve got the
basics of UDP down, we can move on to building something that leverages
the protocol.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/alnpee
http://forums.pragprog.com/forums/alnpee

