
Extracted from:

iPhone SDK Development
Building iPhone Applications

This PDF file contains pages extracted from iPhone SDK Development, published by the

Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2009 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com




Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2009 Bill Dudney and Chris Adamson.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-25-5

ISBN-13: 978-1-934356-25-8

Printed on acid-free paper.

P2.0 printing, December 2009

Version: 2010-2-3

http://www.pragprog.com


EDITING TABLES 98

Here’s the default implementation in tableView:cellForRowAtIndexPath::3

Download TableViews/MovieTable01/Classes/RootViewController.m

Line 1 static NSString *CellIdentifier = @"Cell";
2 UITableViewCell *cell =
3 [tableView dequeueReusableCellWithIdentifier:CellIdentifier];
4 if (cell == nil) {
5 cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault
6 reuseIdentifier:CellIdentifier] autorelease];
7 }

Line 1 creates a cell identifier, a string that indicates the kind of cell

we want. The idea here is that if you use different styles of cells in the

same table (either default styles or layouts of your own creation), you

will need to distinguish them in the table’s cache so you get back the

style of cell you need. In the default case, you use only one style, so any

arbitrary string like "Cell" will suffice. Next, lines 2–3 attempt to dequeue

a cell, that is to say, to retrieve a cell from the table’s cache, passing in

the identifier to indicate what kind of cell is needed. If this fails, then a

new cell is allocated and initialized.

5.5 Editing Tables

So now, we’ve covered how to provide table contents and gain some

control over how the contents of a cell are presented. The next step is

to make the table editable. What this really means is that we want to

make the table serve as an interface for editing the underlying model.

When we delete a row in the table, we want to delete the object from

the model, and when we add an item to the model, we want the table

updated to reflect that.

Let’s start with deletes, which are easier. In fact, the commented-out

code provided by the navigation-application template includes the

basics of what we need to provide deletion. Start with tableView:canEdit-

RowAtIndexPath:. The default implementation (and the default behavior,

if this UITableViewDataSource method is not implemented at all) is to not

permit editing of any row. Uncomment the default implementation, and

change it to return YES;.

3. We’ve reformatted the default code to fit the layout of this book.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/amiphd/code/TableViews/MovieTable01/Classes/RootViewController.m
http://www.pragprog.com/titles/amiphd


EDITING TABLES 99

To implement the delete, we need to implement tableView:commitEditing-

Style:forRowAtIndexPath:. The commented-out implementation has an if-

then block for handling cases where the editing style is UITableView-

CellEditingStyleDelete and UITableViewCellEditingStyleInsert. We need to sup-

port the latter only. To perform a delete, we need to do two things:

remove the indicated object from the moviesArray model, and then re-

fresh the on-screen UITableView. For the former, UITableView provides the

method deleteRowsAtIndexPaths:withRowAnimation:, which is exactly what

we need. Add the highlighted line to the default implementation, as

shown here, and delete the else block for UITableViewCellEditingStyleInsert:

Download TableViews/MovieTable01/Classes/RootViewController.m

- (void)tableView:(UITableView *)tableView

commitEditingStyle: (UITableViewCellEditingStyle)editingStyle

forRowAtIndexPath:(NSIndexPath *)indexPath {

if (editingStyle == UITableViewCellEditingStyleDelete) {

// Delete the row from the data source.

[moviesArray removeObjectAtIndex: indexPath.row];

[tableView deleteRowsAtIndexPaths:

[NSArray arrayWithObject:indexPath]

withRowAnimation:UITableViewRowAnimationFade];

}

}

This gives us swipe-to-delete behavior, but some users don’t even know

it exists. Fortunately, since we’re a navigation app, we have a navigation

bar at the top of the screen that is well suited to hosting an Edit button.

As in other apps, its default behavior when active is to add an “unlock

to delete” button to the left side of every table row that allows editing,

which brings up the right-side Delete button when tapped.

In the viewDidLoad method you uncommented, you might have noticed

the following commented-out code:

Download TableViews/MovieTable01/Classes/RootViewController.m

// Uncomment the following line to display an Edit button in the

// navigation bar for this view controller.

// self.navigationItem.rightBarButtonItem = self.editButtonItem;

You might recall from Section 5.2, Setting Up Table-Based Navigation,

on page 90 that in MainView.xib, the RootViewController came set up with

UINavigationItem as a child element. That represents the blue bar above

the table, typically used for forward-back navigation and for editing

tables. It has two properties for setting buttons in the bar: leftBarBut-

tonItem and rightBarButtonItem. Then, on the right side of this assign-

ment, notice the reference to self.editButtonItem. Every UIViewController

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/amiphd/code/TableViews/MovieTable01/Classes/RootViewController.m
http://media.pragprog.com/titles/amiphd/code/TableViews/MovieTable01/Classes/RootViewController.m
http://www.pragprog.com/titles/amiphd


NAVIGATING WITH TABLES 100

supports this editButtonItem property, which returns a UIBarButtonItem

that calls the view controller’s setEditing:animated: method and toggles

its state between Edit and Done.

The commented-out line is almost what we want, but let’s put the Edit

button on the left, so we can leave the right side for an Add button that

we’ll create later. So, here’s the line you’ll need in viewDidLoad:

Download TableViews/MovieTable01/Classes/RootViewController.m

self.navigationItem.leftBarButtonItem = self.editButtonItem;

Once you Build and Go, you should now be able to tap the Edit button

and bring up the unlock-to-delete button for all the rows. In Figure 5.5,

on the next page, we can see the table in editing mode (with some more

sample data to fill out its rows).

5.6 Navigating with Tables

Our next task is to allow the user to add a table row. In the previous

chapter, we developed a MovieEditorViewController, and that’s perfectly

well suited to entering the fields of a new Movie object or editing an

existing one. And once created, it would be simple enough to add the

new Movie object to the model and update the table.

So, where do we put the editor? In the previous chapter, we used the

UIViewController method presentModalViewController:animated: to slide in

the editor. In this case, we’re going to learn something new: how to

use the navigation objects at our disposal. We created the project as a

navigation-based application in part because it gave us a good starting

point for our table, and navigation also turns out to be a good idiom for

switching between our viewing and editing tasks.

Navigation on the iPhone uses a “drill-down” metaphor that you are

probably familiar with from the Mail, iPod/Music, and Settings appli-

cations. In the SDK, this is managed by a UINavigationController, which

maintains the navigation state as a stack of view controllers. Every time

you drill down, you push a new UIViewController onto the stack. When

you go back, you pop the current view controller off the stack, returning

to the previous view. The navigation is handled in code, independent of

how it’s represented on-screen: whether you navigate by tapping rows

in a table or buttons in the navigation bar, the underlying stack man-

agement is the same.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/amiphd/code/TableViews/MovieTable01/Classes/RootViewController.m
http://www.pragprog.com/titles/amiphd


NAVIGATING WITH TABLES 101

Figure 5.5: Using the default editButtonItem to delete rows from a UITable-

View

Adding the MovieEditorViewController

To try this, let’s get to the MovieEditorViewController by means of the nav-

igation API. In fact, we’ll use it for two purposes: to edit items already

in the table and to create new items.

As with the Movie class, you’ll need to copy the MovieEditorViewController.h

and MovieEditorViewController.m files to your project’s Classes folder and

then add those copies to the Xcode project. Also copy over the MovieEd-

itorViewController.xib (with Add > Existing Files as before) to the project’s

Resources group. In the earlier examples, this editor view was pre-

sented modally and took up the whole screen. In this application, it’s

part of the navigation, and therefore the navigation bar will take up

some space above the view. Fortunately, Interface Builder lets us simu-

late a navigation bar to make sure everything still fits in the view. Open

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/amiphd


NAVIGATING WITH TABLES 102

the nib in IB, select the view, and bring up its Property inspector (D 1).

Under Simulated Interface Elements, set Top Bar to Navigation Bar to

see how the view will look as part of the navigation. In this case, the

Done button won’t be pushed off-screen, but you might want to adjust

its position to get it inside IB’s dashed margin.

To bring up the movie editor, our RootViewController needs to push an

instance of the MovieEditorViewController on to the navigation stack. We

could create the view controller in code, but since we only ever need one

instance, it makes sense to create it in Interface Builder. The first step,

then, is to create an IBOutlet in RootViewController.h. Add an instance vari-

able MovieEditorViewController* movieEditor; inside the @interface’s curly-

brace block, and then declare the property as an outlet after the close

brace:

Download TableViews/MovieTable01/Classes/RootViewController.h

@property (nonatomic, retain) IBOutlet MovieEditorViewController *movieEditor;

As usual, you’ll need to @synthesize this property in the .m file. Also,

remember to put #import "MovieEditorViewController.h" in the header.

Now you’re ready to create an instance of MovieEditorViewController in

Interface Builder. Open RootViewController.xib with IB, and drag a UIView-

Controller from the Library into the nib document window. Select this

view controller, and use the Identity inspector (D 4) to set its class to

MovieEditorViewController. The last step is to connect this object to the

outlet you just created. Ctrl+click or right-click File’s Owner (or show its

Connections inspector with D 2), and drag a connection from movieEdi-

tor to the view controller object you just created. We’re done with IB for

now, so save the file.

Editing an Existing Table Item

Let’s start by using the MovieEditorViewController to edit an item in the

table. When the user selects a row, we’ll navigate to the editor and load

the current state of the selected Movie object into the editor.

The first thing we need to do is to react to the selection event. The

UITableViewDelegate gets this event in the delegate method tableView:did-

SelectRowAtIndexPath:. The navigation-application template provides a

commented-out version of this method in RootViewController, though its

sample code creates a new view controller programatically. We don’t

need to do that, since we already have the next view controller. It’s the

movieEditor that we just set up in Interface Builder. So, we just need to

set up that view controller and navigate to it.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/amiphd/code/TableViews/MovieTable01/Classes/RootViewController.h
http://www.pragprog.com/titles/amiphd


NAVIGATING WITH TABLES 103

Declare an instance variable of type Movie* named editingMovie in the

header file. It remembers which Movie object is being edited, so we’ll

know what to update in the table when we navigate to the table. Once

you’ve done that, the steps here are pretty simple. Remember what

movie we’re editing, tell the MovieEditorViewController what movie it’s edit-

ing, and navigate to that view controller with the UINavigationController’s

pushViewController:animated: method.

Download TableViews/MovieTable01/Classes/RootViewController.m

- (void)tableView:(UITableView *)tableView

didSelectRowAtIndexPath:(NSIndexPath *)indexPath {

editingMovie = [moviesArray objectAtIndex:indexPath.row];

movieEditor.movie = editingMovie;

[self.navigationController pushViewController:movieEditor animated:YES];

}

What’s interesting about the last step is how we get a reference to the

navigation controller. . . remember, we haven’t defined an ivar or prop-

erty for it; in fact, the navigation controller was created for us in Main-

Window.xib, and we haven’t touched it with IB. The neat trick is the nav-

igationController property defined by the UIViewController class and there-

fore inherited by RootViewController. This property (also callable as an

instance method) looks through the object hierarchy to find a parent or

ancestor object that is a UINavigationController. Thanks to this method,

you never need to explicitly make connections to your navigation con-

troller. Your root view controller and any view controllers it pushes onto

the navigation stack can get to the navigation controller with this prop-

erty, using it to navigate forward or back or to update the on-screen

navigation bar.

This is all we need to do to the movie editor view; now we need a way to

get back from the editor to the root. MovieEditorViewController has a done

method that’s connected in IB to the Done button,4 but its implemen-

tation needs to be updated. Instead of dismissing itself as a modal view

controller, it needs to navigate back to the previous view controller:

Download TableViews/MovieTable01/Classes/MovieEditorViewController.m

- (IBAction)done {

[self.navigationController popViewControllerAnimated:YES];

}

4. If we didn’t already have a Done button in the view, it would be more typical to set up

a Done or Back button in the navigation bar. The navigation in the example in Chapter 8,

File I/O, on page 140 will work like this.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/amiphd/code/TableViews/MovieTable01/Classes/RootViewController.m
http://media.pragprog.com/titles/amiphd/code/TableViews/MovieTable01/Classes/MovieEditorViewController.m
http://www.pragprog.com/titles/amiphd


NAVIGATING WITH TABLES 104

As you can see, the MovieEditorViewController also can use the inherited

navigationController property to get the UINavigationController.

This will navigate to and from the movie editor; the only task left to

attend to is to update the table when we return from an edit. The

RootViewController will get the viewWillAppear: callback when we navigate

back to it, so we can use that as a signal to update the table view:

Download TableViews/MovieTable01/Classes/RootViewController.m

- (void)viewWillAppear:(BOOL)animated {

[super viewWillAppear:animated];

// update table view if a movie was edited

if (editingMovie) {

NSIndexPath *updatedPath = [NSIndexPath

indexPathForRow: [moviesArray indexOfObject: editingMovie]

inSection: 0];

NSArray *updatedPaths = [NSArray arrayWithObject:updatedPath];

[self.tableView reloadRowsAtIndexPaths:updatedPaths

withRowAnimation:NO];

editingMovie = nil;

}

}

We gate our update logic with a check to see whether a movie is being

edited, since this method will also be called at other times (at startup,

for example). If we are returning from an edit, we need to identify the

one table row being updated. We can figure this out by getting the array

index that corresponds to editingMovie, constructing an NSIndexPath that

goes to that row in section 0 of the table, and pass the path to the table

view’s reloadRowsAtIndexPaths:withAnimation: method.

Adding an Item to the Table

Another thing we’d like to support is the ability to add new items to the

table. We can actually make this a special case of editing. When the

user taps an Add button, we quietly add an empty Movie to the table

model, insert a table row, and navigate to the editor.

Previously, we used the navigation bar’s leftBarButtonItem for the pro-

vided editButtonItem, so let’s put the Add button on the right side of the

navigation bar. We don’t inherit an Add button from UIViewController like

we did with the Edit button, so we’ll create one ourselves.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/amiphd/code/TableViews/MovieTable01/Classes/RootViewController.m
http://www.pragprog.com/titles/amiphd


NAVIGATING WITH TABLES 105

First, go to RootViewController.h, and set up an IBAction to handle an event

from the button we’re about to create:

Download TableViews/MovieTable01/Classes/RootViewController.h

-(IBAction) handleAddTapped;

Now, since we need to work with the navigation objects that Xcode

created for us, we’ll use Interface Builder to open the MainWindow.xib

file, where they’re defined. Switch the view mode in the nib document

window to list or column view, and double-click the Navigation Con-

troller object. This will bring up a window with the navigation bar at

the top and a view placeholder at the bottom that says it’s loaded from

RootViewController. You’ll notice that the Edit button is absent from the

left side of the navigation bar, because we add it with code at runtime.

Go to the Library, and find the icon for the Bar Button Item. This is

different from the usual Round Rect Button, so make sure the object

you’ve found lists its class as UIBarButtonItem. Drag the bar button to

the right side of the navigation bar, where you’ll find it automatically

finds its way to a highlighted landing spot, making it the navigation

bar’s rightBarButtonItem. Select the bar button, bring up the Attributes

inspector (D 1), and change its identifier to Add. This will change its

appearance to a simple plus sign (+).

The next step is to connect this button to the handleAddTapped method.

This is a little different from the connections you’ve made thus far. First,

when you bring up the button’s Connections inspector (D 2), you won’t

see the usual battery of touch events like Touch Up Inside. Instead,

there’s a single Sent Action called selector. This is because the UIBar-

ButtonItem has a different object hierarchy than regular buttons and

doesn’t have UIControl, UIView, and UIResponder as superclasses. Instead,

this object has properties called target and selector; when the bar button

is tapped, the method named by selector is called on the target object.

You could set both of those properties in code; since we’re already here

in Interface Builder, let’s set it up here.

To set the selector and target, we drag the selector action from the Con-

nections inspector to one of the other objects in the nib. This time,

however, we don’t drag it to the File’s Owner. Since this is the MainWin-

dow.xib, the File’s Owner proxy object points to a generic UIApplication.

The handleAddTapped method that we want the button to call is defined

in the RootViewController class, so we drag the connection to the Root

View Controller object in the nib window, as shown in Figure 5.6, on

the next page. When you release the mouse button at the end of the

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/amiphd/code/TableViews/MovieTable01/Classes/RootViewController.h
http://www.pragprog.com/titles/amiphd


NAVIGATING WITH TABLES 106

Figure 5.6: Connecting a UIBarButtonItem’s selector to the RootViewCon-

troller

drag, the names of the target’s IBAction methods will appear, and you’ll

select the only one: handleAddTapped.

With the connection made, save in IB and return to Xcode. Now we can

implement the handleAddTapped method that will be called when the

user taps the Add button:

Download TableViews/MovieTable01/Classes/RootViewController.m

-(IBAction) handleAddTapped {

Movie *newMovie = [[Movie alloc] init];

editingMovie = newMovie;

movieEditor.movie = editingMovie;

[self.navigationController pushViewController:movieEditor animated:YES];

// update UITableView (in background) with new member

[moviesArray addObject: newMovie];

NSIndexPath *newMoviePath =

[NSIndexPath indexPathForRow: [moviesArray count]-1 inSection:0];

NSArray *newMoviePaths = [NSArray arrayWithObject:newMoviePath];

[self.tableView insertRowsAtIndexPaths:newMoviePaths withRowAnimation:NO];

[newMovie release];

}

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/amiphd/code/TableViews/MovieTable01/Classes/RootViewController.m
http://www.pragprog.com/titles/amiphd


CUSTOM TABLE VIEW CELLS 107

This method starts by creating an empty Movie object, setting it as the

editingMovie, and navigating to the MovieEditorViewController, much like

the code to edit an existing Movie did. What’s different is that after nav-

igating, it does cleanup work on the table view (while the table is out

of sight) by adding the new object to the model array and then call-

ing insertRowsAtIndexPaths:withRowAnimation: to update the table to reflect

the new state of the model. The inserted Movie has blank fields, but

when the user returns from the editor, the object will be updated in

viewWillAppear:, just like when an existing item is edited.

Let’s review. We used the navigation-application template to set up an

application with a table view, which we backed with a model (a simple

NSMutableArray) to provide a list of Movie objects. After looking at the

various table cell styles, we added the ability to delete from the table

either with horizontal swipes (by implementing tableView:canEditRowAt-

IndexPath:), or with the Edit button (by adding the default editButtonItem

and implementing tableView:commitEditingStyle:forRowAtIndexPath:). Then

we looked at how to access the UINavigationControl to navigate between

view controllers and used the MovieEditorViewController to edit a Movie

indicated by a selected row in the table and then to edit a new Movie in

response to the tap of an Add bar button.

5.7 Custom Table View Cells

Back in Section 5.4, Cell Styles, on page 94, we looked at the four cell

styles provided by iPhone OS. Although they suit a wide range of uses,

sometimes you might want something else. If your GUI uses a unique

color theme, the default black or blue text on white cells might not suit

you. If you need to populate more than two labels, then none of the

available styles will work for you.

It is possible, with a little work, to custom design your own table cell

in Interface Builder and have your table use this design instead of the

built-in styles. In this section, we’ll use this technique to create a table

that shows all three of the Movie fields.5

5. Because we will change so much in the project to use custom table cells, the book’s

downloadable code examples have split this exercise into a separate project. The previous

material is represented by MovieTable01, and the custom-cell project is MovieTable02.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/amiphd


The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
iPhone SDK Development’s Home Page

http://pragprog.com/titles/amiphd

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/amiphd.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/titles/amiphd
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/amiphd
www.pragprog.com/catalog

	Table Views
	Deleting rows
	Inserting rows
	Sliding in a view for adding data




