Prag

matic
[OGTaINIIers

Debugging
TypeScript
Applications

Build Web Apps —
That Don’t Break

Andrey Ozornin

edited by Kelly Talbot

This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Prioritizing Bugs Using RICE

Priority is a function of reach, severity, and time. You want to tackle first the
worst of the issues concerning the most people that is the fastest to solve,
and now, when you're able to evaluate all three parameters, you want to
combine them into a single metric, but how do you do it? Do you take first a
small issue concerning a lot of people, or a severe one concerning only one?
What if one of the issues is easier to resolve? The three metrics are measured
in different units, and combining them is not straightforward.

Let’s assume that you have two known bugs in an application with 1000
daily users.

1. Two users reported that they cannot register in your application because
their full names are 52 characters long, and you have a validation limit
set to 50.

2. All users of your application experience slow initial loading. They see a
loading indicator for around five seconds.

First, kudos for having a thousand users and only two known bugs. Awesome
result! Usually it’s the other way around. You need to choose one to take first.
This might seem like a trivial exercise, but when you have a hundred bugs
for a team of five, and you need to balance it with working on new features,
you better have a good methodology at hand.

One common way of prioritizing bugs is using the RICE score. It stands for
Reach, Impact, Confidence, Effort, and lets you calculate a single numeric
value for every task to sort your bug backlog by.

Reach x Impact x Confidence

Effort

Be aware that such formulas are canonical examples of what the Nobel lau-
reate Paul Romer called “mathiness”.® Carl T. Bergstrom and Jevin D. West
gave many good examples of this in their book Calling Bullshit. These
expressions “create the impression of rigor and accuracy,” which we expect
of anything that looks mathematical, but on a closer look we find out that it
involves a good share of guesswork, operations on barely related units, and
an arbitrarily chosen multiplicator, so don’t try treating the RICE score the

same way as measurements.

Nevertheless, use them without a doubt in situations where reaching an
agreement and moving on is preferable to finding the best possible solution

3. https://paulromer.net/mathiness/

« Click HERE to purchase this book now. discuss

https://paulromer.net/mathiness/
http://pragprog.com/titles/aodjs
http://forums.pragprog.com/forums/aodjs

o4

at the cost of time spent on discussions. These situations are very common
in product development. All models are wrong, but some are useful. If you
get a score of 100 on one item and 5 on another, you can confidently prioritize
the former over the latter.

Reach

Estimate the absolute number of users who encounter this bug. If the bug is
reproduced only in Safari, you can prorate this number by the share of Safari
users (around 15-20% overall as I'm writing this, and can vary depending on
your audience profile). If the bug is in a part of the site that you know only a
quarter of users bother visiting, divide it by 4. If it’s only for users using a
particular locale, divide accordingly.

Keep in mind that often people do not report bugs. Use your best judgment
to approximate how many people can be possibly affected. How many users
of your app do you think have full names over 50 characters long?

For our case, we assume it’s 2 people for bug #1 and 1,000 for bug #2.

Impact

You can rate severity, or how bad the bug is, on a scale from 0.25 to 4.

In our example, not being able to log in is just about as bad as it can be. Only
a serious data loss would be worse. It would be fair to rate it at 2 or even 4.
By contrast, waiting for five seconds to load is noticeable but causes at worst
a minor disturbance. 0.25 or 0.5 would be a good impact estimate, depending
on your performance requirements.

Confidence

Confidence is the rating of how sure you are that the approximations of effort
and reach are correct. Don’t calculate too hard, and choose between 100 if
you're fully confident, 80 if you are aware of some unknowns, or 50 if there
are significant unknowns. If you believe 50 is too much, you shouldn’t be
picking this until you resolve some of the most significant unknowns.

Effort

RICE can be seen as a cost-benefit analysis, where reach, impact, and confi-
dence combined measure the benefits of resolving the bug, and effort is the
single score representing the costs, or how much developer time you think it
will take to fix the problem. The original RICE model developed in Intercom
used developer-month as a unit of effort with anything less than a month

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/aodjs
http://forums.pragprog.com/forums/aodjs

Prioritizing Beyond Methodologies ® 5

rated as 0.5, but if you find yourself in a faster-paced project and lucky to
have some granularity of tasks, using month as a unit does not make much
sense, and trying to estimate a project large enough to fill several months will
likely fail without proper decomposition anyway. In practice, it is easier to
not introduce new entities into the process and use whatever measure you
already have in use, be it weeks, days, hours, or story points.

If the supposed fix is a matter of changing a constant in the validation schema,
and you have an idea where this constant is, you can get the minimal possible
estimate: five minutes in a day, depending on the company processes. If it's
a matter of changing database schema in order to support longer values,
that’s the whole other story. In our example, we assume that it’s a constant.

Prioritizing Beyond Methodologies

Whatever you do, don’t be a dogmatic follower. Be smart, use reason. You'll
inevitably be breaking some of the time limits when finishing the task will be
a right thing to do; you will end up using some combination of estimation,
no estimation and timeboxing, depending on circumstances.

Business needs will impact your priorities too, and you’ll have to evaluate
that on a case-by-case basis. Imagine that the company logo is missing in
the application. Users might not care at all, if they can use the app and solve
their needs, but the business you own or work for needs branding to be visible,
you’'ll have to take that into account.

Techniques and methodologies are tools, and you are free to use or not use
them to get things done.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/aodjs
http://forums.pragprog.com/forums/aodjs

