Prag

matic
[OGTaINIIers

Debugging
TypeScript
Applications

Build Web Apps —
That Don’t Break

Andrey Ozornin

edited by Kelly Talbot

This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.


https://www.pragprog.com

CHAPTER 1

Printing and Interpreting Errors

If you see an error, you are blessed. A good error message tells you what’s
gone wrong and helps you find where the problem is. A good error message
has references to the line of code where it occurred, a call stack, and context:
call parameters, OS and browser versions, and so on. Even if your error is
not exceptional and misses details, it still will point you toward a starting
point, so you can figure out the rest.

In this chapter, we’ll get you set up, and then we’ll learn to interpret JavaScript
errors and investigate them using an interactive debugger. We'll explore dif-
ferent error types.

To follow along, you need to know how to open the command line, how to
browse developer tools, and how to switch between the JavaScript console
and interactive debugger.

Setting Up for the Book

Chapter 3, Prioritizing Bugs, on page ? and Chapter 5, Designing Software

require a computer. But to get the most from the rest of this book, you should
follow along with the exercises and install all the following software and tools,
sorted from strictly necessary to optional:

e Chrome or another Chromium-based browser (Brave, Edge, Opera,
Vivaldi). They all share the same platform: V8 as a Javascript engine and
Blink as a rendering engine.

e Visual Studio Code: a free and powerful open-source text editor by
Microsoft with plenty of useful extensions

e Node.js, JavaScript runtime, and npm

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/aodjs
http://forums.pragprog.com/forums/aodjs

Chapter 1. Printing and Interpreting Errors ® 2

e Modern browsers based on engines other than Blink and V8:

— Firefox, based on Gecko (rendering) and SpiderMonkey (JavaScript)
— Safari, or Orion based on WebKit

Mac, Linux, or Windows

You shouldn’t have any trouble following this book using your platform of
choice with one notable exception — hotkeys. The key combinations in this
book will be provided for the Mac. Most of the time, if you're using Linux or
Windows, it’s just a matter of pressing |Ctrl| where you read | 38 and |Alt| where
you read |, but sometimes keyboard patterns have bigger differences, and
I'll do my best to identify them whenever that turns out to be the case.

Chrome Developer Tools

We'll be using Google Chrome in this book, but feel free to use the browser
of your choice. The developer tools will be mostly the same.

To open the JavaScript Console in Chromium, press \ |- § -] or choose View
— Developer — JavaScript Console in the top menu.

dit View History Bookmarks Profiles Tab Window Help

9 Always Show Bookmarks Bar
Always Show Toolbar in Full Screen
sk Always Show Full URLs

Reload This Page

Enter Full Screen

Zoom In
Zoom Out !

Cast...

Developer > View Source
Developer Tools
Try: Inspect elements

Bl Jav o
Allow JavaScript from Apple Events

By default, Chrome developer tools open at the bottom of the screen. You can
easily dock it to the right or left of the browser window, or even undock it to
a separate window (which is especially convenient if you have a two-monitor
setup).

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/aodjs
http://forums.pragprog.com/forums/aodjs

Setting Up for the Book ¢ 3

1-party/

Memory  Application > €3
Dock side oD B0

Focus page Dock to left
Show console drawer Esc

Changing the developer tools’ size and position will adaptively change the
position and visibility of Ul panels, so your screen won’t look the same as this
book’s images, but the difference is merely cosmetic.

On the top of the developer tools, you'll find tabs.

o o DevTools - chrome://new-tab-page-third-party/
i [0 Elements Console Sources Network Performance Memory  >> ]
D@ topv © Y Filter Default levels v No Issues €83

You can go directly to the element inspector by pressing |\X|-/$|-C| and
opening wherever the developer tools panel was last open by pressing | \_ - & /1.

Installing VS Code and Extensions

The IDE used in this book is Visual Studio Code, which is open-source and
developed and maintained primarily by Microsoft. It can work with git and
TypeScript out of the box and lets you install plenty of third-party plug-ins
from the marketplace: from C++ static analysis to project management tool
integrations and Al-powered code companions. Note that the VS Code mar-
ketplace platform is controlled by Microsoft and the binary, unlike the source
code, has Microsoft telemetry built in.

We will talk about setting up the developer infrastructure and productivity
tools in Chapter 5, Designing Software That Doesn't Break, on page ?, but

for now I'll list the plugins I recommend you to install and at least read mar-
ketplace descriptions of:

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/aodjs
http://forums.pragprog.com/forums/aodjs

Chapter 1. Printing and Interpreting Errors © 4

e ESLint
e Prettier
e Jest

If you don’t like Visual Studio Code, you can use JetBrains WebStorm, which
is free for non-commercial use and also has everything we need for this book
out of the box.

Git and Repositories

This book’s code samples are available on the pragprog website' and GitHub”
for downloading. This book assumes that you have git. You can follow the
instructions on the git website® to install it. Technically, you can work around
git by downloading .zip archives from GitHub instead of cloning repositories,
but git is the industry standard and it is good. Get it, really.

To clone a repository (download project files and the full history of changes
to your local computer), you run git clone.

git clone https://github.com/oshibka404/xo0x0.js.git

This command will clone a tic-tac-toe game written in JavaScript without
external libraries or frameworks.

Node.js and NPM Packages

There are multiple ways of installing Node.js, depending on your operating
system, preferred package manager, and habits. This book uses the one that
works on both macOS and Linux. Go to nodejs.org, open the Download page,
and enter the following in the terminal.

# installs nvm (Node Version Manager)
curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.40.1/install.sh | bash

# download and install Node.js (you may need to restart the terminal)
nvm install 24

This book uses Node v24.11, which is the most current LTS (long-time support)
version. If you have another version of Node.js, you can and should use the
node version manager to switch between versions. This book uses nvm, the
most used of the alternatives at the time of this writing.

# to use the version we use in the book
nvm use 24

1. https://pragprog.com/titles/aodjs/
2. :

« Click HERE to purchase this book now. discuss


https://pragprog.com/titles/aodjs/
https://github.com
https://git-scm.com/downloads
http://pragprog.com/titles/aodjs
http://forums.pragprog.com/forums/aodjs

Setting Up for the Book ® 5

If you have switched to a different version, you can go back to the latest LTS
version by running:

nvm use --1ts

This book uses node.js tools, such as package manager Yarn, test runner
Jest, and static analyzer ESLint. Frameworks and libraries such as React,
Lodash, and Astro will also be used. To install these packages from NPM, use
this:

# Install Jest and save to developer dependencies
npm install jest --save-dev

# install React and save it to project dependencies
npm install react

# install a specific version of lodash (in this example, v3)
npm install lodash@3

# Install yarn and make it available globally
npm install --global yarn

# After installing a package globally, you can call it in command line directly:
yarn

Alternatives

This book mostly uses tools such as Node, NVM, NPM, ESLint, and Git, which
are mature and widespread enough to not cease to exist in next couple of
years. Still, alternatives exist that are in general faster, provide a better
developer experience, or are based on a different paradigm. All of them are
worth trying or reading about.

Command-line tools and npm packages include the following:

* Node.js: bun, deno
e NVM: fam
e NPM: yarn, pnpm or, again, bun
e ESLint: Biome
e Git: jj
e Jest: vitest
Web tools and desktop software include the following:

e GitHub: CodeBerg
¢ VS Code: WebStorm

Checklist

Once you have the following installed, you're good to go:

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/aodjs
http://forums.pragprog.com/forums/aodjs

Chapter 1. Printing and Interpreting Errors ® 6

e Chrome or another Chromium-based browser

¢ Visual Studio Code

e Node.js and npm

. git
If you choose to use alternative software while following this book, I assume
you know what you're doing or are willing to do some research on your own.
Now that everything’s ready, you can start having some fun.

Getting Started with Debugging

We'll start with debugging a production website rather than a locally running
copy where you have full edit access to all the files. In the usual debugging
process, this is the first step after a bug is reported by an external user: you
open the same URL as they did and try to get the same results as they did.
After you have managed to reproduce the problem, you start exploring to find
the boundaries of the bug: Does the same thing happen on other pages? Does
it happen on a local copy? On refresh? In a different browser? On a different
OS? With another screen resolution? With a different zoom level?

There are many nuances to a good bug reproduction, as well as to a good bug
report, and we’ll talk about them in-depth in Chapter 4, Finding the Root

reproduced error on a remote site using only a browser.

Fixing Common Errors

Open the tic-tac-toe game page” in a browser. The page opens, and the playing
field is visible, but nothing happens when you click. Let’s fix it.

4. https://oshibkad04.github.io/xoxo.js/

« Click HERE to purchase this book now. discuss


https://oshibka404.github.io/xoxo.js/
http://pragprog.com/titles/aodjs
http://forums.pragprog.com/forums/aodjs

Fixing Common Errors ® 7

XOXo

Fixing a SyntaxError with Code Overrides

Open the JavaScript console and see Uncaught SyntaxError: Unexpected token '{'
written in red. SyntaxError, of all the error types, is the easiest to deal with.
Usually, it means that you need to add or remove one character. Right next
to it, you will see a clickable link to the line and column where JavaScript
parsing failed:

M @ tpv & Y Filter

@ Uncaught SyntaxError: Unexpected token '{' (at game.js:12:46)

Clicking on it will show you a code listing with the suspected line highlighted:

}

@ Uncaught SyntaxError: Unexpected token '{'
document.getElementById('game").addEventListene « wesen—yver =t

if (e.target.classList.contains("clear") { @
e.target.classList.replace("clear", state.currentPlayer)
state.currentPlayer = state.currentPlayer === "x" ? "o" : "x"
state.winner = checkWinner()
if (state.winner) {

If the syntax mistake is not immediately clear from there, the typical sequence
of actions to find it would be:

1. Count the opening and closing brackets of each kind around the error
origin. (For example, { ([ ]} is missing a closing ) bracket.)

2. Check that the order of closing brackets matches the order of the opening
ones. (For example, ( { }) is valid, but ({) } is not.)

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/aodjs
http://forums.pragprog.com/forums/aodjs

Chapter 1. Printing and Interpreting Errors ¢ 8

3. Check commas, colons, and semicolons. (For example, the declaration
function foo(a b) misses a , between its arguments. It should be function foo(a,
b).)

4. Google the error text, having removed variable names and values from it.

In our case, the if condition is missing the closing parenthesis ). Note that
Unexpected token "{" does not always mean that the { should not be there. Often
it means that something that the code parser failed to find there should exist
before it.

The JavaScript engine of WebKit-based browsers like Safari and Orion has an even
more detailed description of SyntaxError than Chrome’s V8. It not only tells you what
unexpected character breaks the code parsing, but it also points out which character
is expected, making the fix even easier for you. In our example, it would leave less
ambiguity and print:

SyntaxError: Unexpected token '{'. Expected ')' to end an 'if' condition.

SpiderMonkey, the JavaScript engine of Firefox, provides a handy link called "[Learn
More]" that leads to the MDN page with a description and common causes of this
specific error.

@ Uncaught SyntaxError: missing ) after condition [Learn Morel game.js:12:45

If we were debugging a page in local files, we would open the game.js file in
a code editor, add the missing ), save the file, and refresh the page in the
browser. But we are debugging a remote webpage with its source code on a
server where we cannot easily upload a new version of a file and check whether
it works. We will have to use local files on remote sites, and Chromium-based
browsers allow us to do that using local overrides.

Local Overrides

In the Sources tab, add the missing parenthesis, then right-click the code
editor and select “Override content.”

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/aodjs
http://forums.pragprog.com/forums/aodjs

Fixing Common Errors ® 9

Network  Performance  Memory  Application  Security Lighthouse

js X t . .
Algameis Reveal in navigator sidebar

3 ccnsfxﬁ}a}"i;g::g‘; { Open in containing folder
8 "o": "\u2B55", Reveal in Network panel
9 )
10 Copy link address
11 document.getElementById("gane") .addEventLister o
12 if (e.target.classList.contains("clear)), COPY TN
13 e.target.classList.replace("clear", si
14 state.currentPlayer = state.currentpl; Add source map...
15 state.winner = checkWinner()
16 it (state.wimner) {
17 document. getElementById("winner"). at
18 document.getElementById("result"), Save as...
19 } else if (document.getElementsByClast {
20 document. getElementById("winner"). Add script to ignore list
21 document. aetElementBvId("result"),
Line 12, Column 46 AutoFill >

The browser will ask you to choose a folder to store the override files in (which
can be any folder) and permit it to access the folder. Now refresh the page,
click on any of the cells, and enjoy that the error is gone.

XOXOo

From now on, you can access your local overrides in the left sidebar of the
Sources panel, in the “Overrides” tab. Going forward, all the style changes
you make on the pages of this website will also be preserved between sessions,
unless you explicitly disable this functionality or uncheck the “Enable Local
Overrides” checkbox.

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/aodjs
http://forums.pragprog.com/forums/aodjs

Chapter 1. Printing and Interpreting Errors ® 10

Page Workspace Overrides >>

Enable Local Overrides (%)
v [ live-edit
v [ file:/Users/oshibka404/projects/x...
D. game.js
[: style.css

SyntaxErrors are not only the easiest errors to fix but also the easiest to prevent.
Visual Studio Code, WebStorm, Zed, or any other modern web-oriented text
editor will highlight these errors in no time. Sometimes, for various reasons,
you might have to edit the code in web editors, using automated scripts, or
in the console without the syntax highlighted, so the code editors won’t help.
If it happens often enough for the problem to be noticeable, you can set up
a git hook validating code on commit and set up continuous integration (CI).

Syntax errors will be many times easier to find if you practice consistent for-
matting, and automation will help too. Use Prettier® or Biome® to validate or
even auto-fix code formatting. It is helpful when you are on your own, and
it’s essential in a large team. We'll discuss developer infrastructure in more
detail in Chapter 5, Designing Software That Doesn’t Break, on page ?.

Fixing TypeError with Interactive Debugging

If you are from this planet and have played tic-tac-toe before, you will quickly
notice that the game doesn’t work. In a real tic-tac-toe game, when one of the
players gets three crosses or circles in a row, column, or diagonal, the player
wins and the game is supposed to finish. On our page, that doesn’t happen,
and the losing player can make moves even after being beaten.

5. https://prettier.io/

« Click HERE to purchase this book now. discuss


https://prettier.io/
https://biomejs.dev/
http://pragprog.com/titles/aodjs
http://forums.pragprog.com/forums/aodjs

Fixing Common Errors ® 11

XOXo

To start investigating why, let’s take another look in the JavaScript console.
You will find two unique error messages.

@ » Uncaught ReferenceError: Cannot access 'reset' before initialization
at game.js:26:62

@ » Uncaught TypeError: document.getElementsByTagName(...).map is not a function
at checkWinner (game.js:38:55)
at HTMLTableElement.<anonymous> (game.js:15:24)

Let’s investigate the error using interactive debugging, a powerful technique
that we’ll be using a lot in this book and will dive deep into in Chapter 6,

tab and enable the “Pause on uncaught exceptions” checkmark.

i S
» Watch
v Breakpoints

Pause on uncaught exceptions
() Pause on caught exceptions

v Scope
Not paused
v Call Stack
Not paused
Click on a game cell to make a move. The execution pauses on the line where
the error is happening, and the code listing automatically scrolls to that line.
Now you have access to all the values of variables and properties that are in
the visible area of the line and column where the exception is thrown. Hover
over the cells variable. In the popup, you see that cells is an instance of HTMLCol-

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/aodjs
http://forums.pragprog.com/forums/aodjs

Chapter 1. Printing and Interpreting Errors ® 12

lection and has indexed properties that we are unsuccessfully trying to iterate
through using map.

Sources Network Performance HTMLCollection(9)

[ D game.js [ style. » 0: td.x
25 > 1: td.clear
26 document.getElemeni » 2: td.clear &
27 » 3: td.clear
28 const reset = () = »4: td.clear
sfxoxo 29 state.winner = » 5: td.clear
30 state.currentP] » 6: td.clear
31 for (const cell » 7: td.clear
32 cell.classt » 8: td.clear
33 ¥ length: 9
34 document.getEl¢ v [[Prototypel]: HTMLCollection
35} » item: f item()
36 length: (...)
37 function checkWinn¢ ) namedItem: f namedItem()
38 const cells = tucu envvyetcremenespy ragvamey—tu—y—eewes=-r]
39 const squares = cells.map(({className}) => className === "cle
40 const lines = [
41 lo, 1, 21,

{} Line 39, Column 27

If you expand prototype to see what methods of HTMLCollection are available, you’ll
see that there is indeed no method called map. There are multiple options to
actually map a collection of cells to an array of "x", "o" and "', depending on
the cell class. For example, you can rewrite the method to use for ... of instead
of map to iterate across all items or transform the HTMLCollection into an array
and keep the rest of the logic as it is. Let’s do the latter and replace cells.map
with [...cells].map. HTMLCollection allows us to do this because it is an lterable, which
we can tell because it has a [[Symbol.lterator]] in the prototype.

[...cells].map(({className}) => className === "clear" ? "" : className)

Edit and press Cmd+S to save the override, then refresh the page. Verify that
the proper winner check works now.

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/aodjs
http://forums.pragprog.com/forums/aodjs

Fixing Common Errors ® 13

X won.

Even without interactive debugging, it’s often possible to figure out where to start
investigating just by carefully reading the errors. In our case we have two errors:
ReferenceError mentions something about reset which might be relevant somehow, but
the TypeError has a checkWinner function in its call stack, and we know that there’s a
problem somewhere around checking whether there is a winner. If the function were
named not checkWinner but doThings, we wouldn't have such a privilege.

TypeErrors can sometimes be tricky to track, but you can prevent them with
technical measures, the best kind of prevention. Switch to TypeScript and
don’t circumvent its restrictions; they are there for a reason. We’'ll talk more
about using and configuring TypeScript for your projects in Chapter 5,
Designing Software That Doesn't Break, on page 2.

Fixing ReferenceError by Moving Code Blocks

The Restart button doesn’t work. If you follow the same steps as we did earlier
(either click the link in the JavaScript console or pause on exception and
refresh the page), you will see that reset is not defined yet when it’s being
called.

There are two schools of thought regarding method ordering. One encourages
the main procedure of a module, or an entry point, to be placed on top with

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/aodjs
http://forums.pragprog.com/forums/aodjs

Chapter 1. Printing and Interpreting Errors ® 14

all of its subroutines declared below, in order of appearance. The other per-
spective prescribes every function in the module to be declared before it is
referenced. Either approach is possible for this case. Whichever approach
you choose, be consistent (at least within a single project), especially if you
are not working alone. Following a rule consistently often matters more than
whatever the rule actually is.

Your options to fix the error are:

1. Change the function expression to the function declaration: replace const
reset = () => { with function reset() {. Function declarations hoist to the top of
their scope and can be safely referenced from there.

2. Take the function as it is and move it above its usage.

Pick either option, save the file by pressing Cmd+S, and refresh the page.

Both actions can have side effects that are not relevant in this scenario but
in many cases will be. Arrow functions, declared with the syntax () => {},
preserve the context where they are declared, whereas functions using the
keyword function will use the context of the call. Be aware that if you change
a function with this used in its body from an arrow function to a class method
or vice versa, you are likely to break something.

Another important consideration is that execution order matters a lot, and if
to fix a ReferenceError you do something more significant than swapping a
function and a reference to it, double-check that the other code in the module
doesn’t rely on it being where it was.

That being said, congratulations! The tic-tac-toe game works. If you cloned
the repository, you can copy the fixed file contents to the text editor, open
index.html in a browser, and play around with the code.

Looking Up Errors

There are many other error types: RangeError, URIError, AggregateError, and dozens
of different TypeErrors and SyntaxErrors. They all have lots in common within each
type, and the techniques we learned in this chapter will help you to deal with
any of them.

When you google the error, remember to delete your data and names of your
variables from the request. Having them will only worsen the search result
quality.

Al tools can be useful in interpreting and mitigating errors, but the burden
of validation and the final judgment stays with you, the human. It is perfectly
fine to apply a fix suggested by Al, but make sure you understand how the

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/aodjs
http://forums.pragprog.com/forums/aodjs

Wrapping Up ¢ 15

fix works well; otherwise, you can’t be sure that it is a good fix. “If you didn’t
fix it, it ain’t fixed.” What’s more, if you end up breaking it worse, it needs to
be fixed even more.

Mozilla Developer Network has a great JavaScript Error Reference’ page listing
all existing native JavaScript errors, their versions in different families of
browsers, common causes, and solutions to them.

Wrapping Up

Now that you've completed this chapter, you should be able to trace the pro-
gram execution flow by printing console messages without interrupting it.
You can pause the program execution, inspect its state, and resume, using
the interactive debugger. You are able to interpret JavaScript errors you see
in the console.

In the next chapter, we’ll use this knowledge of errors and logging to build
reliable, easily debuggable software systems.

7. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Errors

« Click HERE to purchase this book now. discuss


https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Errors
http://pragprog.com/titles/aodjs
http://forums.pragprog.com/forums/aodjs

