Serverless Apps
on Cloudflare

Build Solutions, Not Infrastructure

Ashley Peacock

edited by Michael Swaine

This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Introduction

Back when I started creating software, over fifteen years ago, things looked
very different to how they do now. I started out like a lot of engineers, building
a simple blog using PHP and MySQL. It was the perfect introduction to pro-
gramming, with the ability to simply upload your PHP code to some cheap,
shared hosting, and instantly be able to run your code.

There were no containers, and nobody had really heard of the cloud, with
Amazon just starting its journey with AWS. As the cloud took off, and everyone
started migrating, technologies such as Docker became increasingly popular,
allowing you to run your applications locally inside containers, and deploy
those same containers remotely in the cloud.

At each point, the idea has been to make building and deploying applications
simpler and easier for everyone. Right now, you can go and spin up quite lit-
erally anything in the cloud, from your own instances, to databases, to
machine learning tools, and everything in between.

The next big shift in how we build and deploy applications, in my opinion, is
serverless.

What is Serverless?

With serverless, you don’t pay for what you don’t use. That’s a big deal. I'll
explain.

The most common way to deploy applications to the cloud today is to provision
an instance, such as on AWS EC2, and then deploy your application to it.
Whether you put the code on there directly, or via containers using AWS ECS,
you're ultimately renting servers from the cloud provider, and paying for every
hour your instance is running. Considering your websites can be accessed
24/7, that means your EC2 instances are also running 24/7, and you’re
paying 24/7.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/apapps
http://forums.pragprog.com/forums/apapps

Introduction ® iv

With serverless, you package up your code, upload it to a serverless runtime,
and the cloud provider handles the rest. You don’t need to provision any
servers, your code is simply executed when a request comes in. If your website
receives zero requests in twenty-four hours, you'd pay $0 because your
application didn’t handle any requests.

Imagine your application hasn’t received any requests for a while. Then, a
single HTTP request comes in. Your application’s code will be loaded into
memory, the request will be executed against it, and a response returned.
Imagine a second request comes in right after; it'll potentially be executed
against that same instance of your serverless function, or perhaps a new
instance will be created. After a period of that application receiving no
requests, the code will be removed from memory, and another instance will
be created when the next request comes in.

For some cloud providers, when a request comes in and a new instance of
your serverless application is needed, this can sometimes be a little slow, as
it has to load your application into memory. It varies depending on the lan-
guage and runtime, but these initial loads can often take upwards of 500
milliseconds.

With Cloudflare, cold starts are not generally an issue, thanks to their platform
being geared entirely towards serverless. When a request is made from a
client, such as a browser, it must first establish a secure connection (as
pretty much everything these days is over a secure connection, such as
HTTPS). This process is known as the TLS handshake, and during that
handshake, the client must send a “hello” message to whoever it’s trying to
connect to. When Cloudflare sees that hello, it knows what code to load to
serve that request based on the URL. It loads that code in memory ready to
go during the TLS handshake, so when the handshake completes and it needs
to handle the actual request, there’s no wait time for your code to load.

I'm going to focus on the Cloudflare serverless platform in this book, but the
serverless concept is agnostic of any cloud provider. Every cloud provider has
a serverless offering, so you can apply what you learn in this book to any of
those platforms. Although the implementation details will differ, the underlying
serverless approach you’ll learn here will work anywhere.

I'm a serverless fan, and as I see it, serverless benefits you in four ways: pay
for what you use, scalability, high availability, and no server maintenance.
I'll discuss each of these with Cloudflare as my example, but the benefits
apply to any serverless solution.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/apapps
http://forums.pragprog.com/forums/apapps

Pay for What You Use ® v

Pay for What You Use

With the major cloud providers, you effectively pay per request handled. Each
request handled by your serverless function is called an invocation. That
might sound expensive, and it can be if you get a lot of requests, but for the
vast majority of websites and applications, your costs won’'t get anywhere
near what they would if you were provisioning your own instances.

Take Cloudflare, for example; you can sign up for a free account, and
instantly get access to 100,000 free requests per day. If your website becomes
popular enough to hit that limit, you’ll only pay $0.50 per million invocations
after that. Considering the cheapest EC2 instance from AWS, at the time of
writing, is around $50 a month, you’d need your EC2 instance to serve a lot
of requests before it would be more cost-effective to run on EC2. In fact, you'd
need to handle over a hundred million requests through Cloudflare before
you reach the same spend as a single EC2 instance on AWS.

However, if you were receiving enough requests to make an EC2 instance
more cost-effective than serverless, I doubt the smallest EC2 instance would
handle that. In the example above, assuming the hundred million requests
were spread out evenly, your single EC2 instance would have to handle thirty-
eight requests per second, which is a tall ask for a single EC2 instance with
limited resources.

That brings us nicely to the next principle of serverless: built-in scalability.

Scalability

As your application grows and becomes more popular, you'll receive more
traffic to it. That will raise the amount of CPU and memory your application
uses, and at some point, you won’'t have enough to handle all the requests.
You can extract a lot from a single EC2 instance, especially if you use concur-
rency, but it will only go so far.

In a traditional cloud setup, you have two options in order to handle more
traffic: vertical or horizontal scaling. Vertical scaling involves increasing the
resources on your instances, whereas horizontal scaling increases the number
of instances you have running.

In both cases, there’s naturally a cost increase. Increasing the instance type
on your EC2 instance, even from the smallest to the second smallest, doubles
your monthly cost. Each time you increase the size of your instance in AWS,
the cost roughly doubles. If you need more memory, you have no real choice
but to increase the instance type (unless you can optimize your application’s

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/apapps
http://forums.pragprog.com/forums/apapps

Introduction ® vi

memory use). Along the same lines, adding more instances and horizontally
scaling increases costs too. And don't forget about the additional cost of load
balancers.

If we compare that to serverless, a lot of that complexity is handled for you.
You might still need to pick how much memory you want to allocate, or how
much CPU, but that’s about it. With Cloudflare, there are set limits for CPU
and memory. Each instance of your serverless function has 128MB of memory
to work with, and as much CPU as you could realistically need.

Even on the free plan, you get 10ms of CPU time per request. It might not
sound like a lot, but in terms of CPU time, the vast majority of requests to
Cloudflare use less than 1ms of CPU time. That doesn’t mean your application
has to respond in 10ms, as a lot of what an application might do isn’t CPU-
related. For example, waiting for a response from an API call or writing data
to a database. I've yet to hit any of these limits when developing applications
on Cloudflare.

As we're now just packaging up code and giving it to the cloud to handle, we
don’t worry about servers, and your serverless applications will automatically
scale to meet demand, without any work from you. Additionally, in the case
of Cloudflare, you don’t need to worry about load balancers either, or even
how to expose your application; it’s all handled for you, including DNS and
SSL certificates.

That means if your application gets a surge of traffic, which can sometimes
unexpectedly happen, your application will scale to meet demand. There’s no
configuration needed; unlike when you horizontally scale your own instances,
serverless has auto-scaling built-in.

In the traditional cloud setup, there’s actually a second reason to run multiple
containers besides scalability, and that brings us on to the third principle of
serverless: high availability.

High Availability

High availability and scalability are closely linked, as they are both key to
ensuring your application is always ready to meet the needs of your users.
Whereas scalability is all about ensuring your application can deal with
increases in traffic, high availability is ensuring you can deal with unexpected
failures.

I described scaling the number of server instances of your application to meet
demand, but running more instances of your application also makes it more

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/apapps
http://forums.pragprog.com/forums/apapps

High Availability ® vii

highly available. For example, if you are running three instances, and one of
those instances unexpectedly crashes, you have two more that are still able
to serve traffic.

High availability isn’t just about running more servers though, or at least not
without some further conditions. While uncommon, it’'s possible for cloud
providers to experience widespread issues on their network. For example,
there might be routing or DNS issues in one of their data centers. If your
application is hosted exclusively in one data center, such as us-east-1 on
AWS, that means your application is going to be unavailable.

To cater for this case, you can deploy to different regions and/or availability
zones. For example, you might deploy some instances to a data center on the
East Coast of the US, and some to the West Coast of the US. This increases
the availability of your service, as should one data center go down, you still
have servers in another that can serve traffic.

This does add to your costs and complexity though, as you now need to ensure
your servers are running in different regions and/or availability zones, and
if you combine that with auto-scaling, you need to ensure you can scale up
and down in both regions too.

These cost and complexity considerations are taken care of with serverless.
Much like scalability, high availability is just baked into serverless. Because
you're not spinning up your own servers, and the cloud provider is handling
how and where to host your application, they also take care of ensuring it's
highly available.

That’s because you're not tied to a specific set of servers, regions, or availabil-
ity zones. Even if there was a catastrophic failure, and all the data centers in
the US went down, your serverless application would simply be served from
another country instead. Latency to your end users would increase a little,
but that’s a small price to pay for maintaining your application’s services.

If you want to get an idea of the scale at which Cloudflare operates its network,
maintained project, but it shows you all of the data centers Cloudflare oper-
ates, and just how much coverage they provide worldwide. Green dots indicate
the data center is available, orange indicates it’s undergoing maintenance or
is being rerouted to another data center. The following is a snapshot, just to
give you an idea:

« Click HERE to purchase this book now. discuss

https://statusmap.cloudflare.community/
http://pragprog.com/titles/apapps
http://forums.pragprog.com/forums/apapps

Introduction ® viii

RaTErmOaTY
Canada Denm7 - Lihuania e Vg Omsk Novosibirsk

Calrary Jo. ..o
Un.aine
Quiebec Filuce 2 an Kazakhstan

Mongol.&

Tojuins 0
Soston oty Istsnbul Uzbekistangjrayzstan
Jnited St 525 ewYork - Grnc., Turkey Turkmenistan
Lisbon, P
(s Chi
Tunisia Syria, Afghanistan
Mocco tran Shan

Algeria

Pakistan Nerst (oo

Zanoizdesh R0,

India

Vietnam

Philipoine

Malaysia Bi

Indonesia
Jakarta.

Tanzaniy

Matawi
Bolivia

Zimblowe Madascar

Chile

Sl Uruguay. Cape Town:

Argentina

(Olmapbox © Mapbox © OpenSiretitap Improve this map

In short, serverless applications built on Cloudflare are global by default.

We've talked a lot about the manual work required for the likes of AWS, which
brings us nicely on to the final principle: no server maintenance.

No Server Maintenance

Finally, with serverless, there should never be a need to maintain any servers
because with serverless, you don’t spin up your own servers. No upgrading
the version of the programming language you’re using, no upgrading the
operating system, nothing like that. If you deploy your application to an EC2
instance, you’ll need to upgrade the language version you're using yourself.

You're still responsible for upgrading the dependencies you introduce, such
as packages and libraries, but besides that, there should be no dependency
or server management whatsoever. If you want to change the version of the
language you're using, or even change languages entirely, that should be a
painless process and a simple configuration change.

This is one of the primary reasons why I enjoy developing serverless applica-
tions. I can focus on what I enjoy most, and that’s writing code.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/apapps
http://forums.pragprog.com/forums/apapps

Ready to Go Serverless? ® ix

Ready to Go Serverless?

So that’s the three-dollar tour of serverless. Now it’s time to write some code.
As you go through the book, you’ll master building serverless applications
through hands-on projects. Youll build several different applications to
showcase specific serverless concepts.

Should you get stuck at any point or simply want to view the finished projects
without making them yourself, you can do so on GitHub.' This repository
contains all the completed projects.

Let’s build some serverless applications!

1. https://github.com/apeacock1991/serverless-apps-on-cloudflare/

« Click HERE to purchase this book now. discuss

https://github.com/apeacock1991/serverless-apps-on-cloudflare/
http://pragprog.com/titles/apapps
http://forums.pragprog.com/forums/apapps

