
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/apapps
http://forums.pragprog.com/forums/apapps

Execute AI Models
It blows my mind how easy it is to use AI these days. Just a couple of years
ago, AI technologies felt like an alien concept; they were complex and required
specialized training to use. Fast forward to 2024, and the rapid development
of generative AI has democratized access to AI for everyone, regardless of their
background.

For your application, you’ll use the Resnet 50 model from Microsoft, an AI
model designed for image classification. When presented with an image, the
model provides a list of identified objects along with confidence scores. For
instance, uploading an image of a cat should result in the model recognizing
it as a cat, and in some cases, even specifying the breed.

Let’s use some AI, by first updating the environment to expect the AI binding.
Open env.d.ts and update CloudflareEnv to the following:

interface CloudflareEnv {
IMAGE_APP_UPLOADS: R2Bucket;
AI: any;

}

Cloudflare’s documentation defines the type as any, so I’ve followed suit. I
suspect in the future there’ll be a defined type.

With the environment now expecting an AI binding to be injected at runtime,
you can update the server-side endpoint defined at src/app/api/files/route.ts to the
following:

import { getRequestContext } from '@cloudflare/next-on-pages'

export const runtime = 'edge';

export async function POST(request: Request) {
const bucket = getRequestContext().env.IMAGE_APP_UPLOADS;
const body = await request.formData();
const files = body.getAll('files');
const ai = getRequestContext().env.AI;
let imageAnalysis = [];

for(let x = 0; x < files.length; x++) {
const f = files[x] as File;
const uuid = crypto.randomUUID()

await bucket.put(uuid, f);

const blob = await f.arrayBuffer();

const inputs = {
image: Array.from(new Uint8Array(blob))

};

• 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/apapps
http://forums.pragprog.com/forums/apapps

imageAnalysis.push(
{

id: uuid,
name: f.name,
analysis: await ai.run('@cf/microsoft/resnet-50', inputs)

}
)

}

return new Response(JSON.stringify({results: imageAnalysis}), {
headers: { 'content-type': 'application/json' }

});
}

Whenever you want to use bindings in Pages projects, you need to import
getRequestContext to get access to them:

import { getRequestContext } from '@cloudflare/next-on-pages'

Then, to call a model, you use getRequestContext.env to access the environment
where bindings will be set:

const ai = getRequestContext().env.AI;
let imageAnalysis = [];

You also need to create an empty array, which will be populated later in the
function with the image analysis results that will be returned from the API.
With the bindings retrieved, you can now call the model for each image
uploaded:

const blob = await f.arrayBuffer();

const inputs = {
image: Array.from(new Uint8Array(blob))

};

imageAnalysis.push(
{

id: uuid,
name: f.name,
analysis: await ai.run('@cf/microsoft/resnet-50', inputs)

}
)

To call the Resnet 50 model, the image has to be converted to something a
machine can understand. Therefore, you convert the image to a byte array
using arrayBuffer, and then that is converted to an array of unsigned 8-bit
integers, which is something the model can understand.

With the input prepared, the final line in this section calls the Resnet 50
model, pushing the results to the imageAnalysis array. When calling any AI

• Click HERE to purchase this book now. discuss

Execute AI Models • 5

http://pragprog.com/titles/apapps
http://forums.pragprog.com/forums/apapps

model on Cloudflare, you always call the run method, with the first parameter
being the model and the second being the input. If you’re unsure how to format
the input for a given model, Cloudflare has code examples.1

Lastly, the server-side endpoint returns the image analysis results:

return new Response(JSON.stringify({results: imageAnalysis}), {
headers: { 'content-type': 'application/json' }

});

That’s all that’s required to call an AI model. Cloudflare has made it nearly
effortless to use such a powerful tool.

Your work isn’t done just yet though, as to see the model in action, you need
to update the front end to render the image classification results.

Workers AI Limits

As with most things, there are limits. At the time of writing,
everyone gets 10,000 tokens free per day for text generation and
embeddings, as well as 250 steps for images, and 10 minutes of
audio. As Workers AI is available on the free plan, once you hit
your daily limit, your requests will fail.

Cloudflare’s documentation has a full list of limits by model.2

1. https://developers.cloudflare.com/workers-ai/models/
2. https://developers.cloudflare.com/workers-ai/platform/limits/

• 6

• Click HERE to purchase this book now. discuss

https://developers.cloudflare.com/workers-ai/models/
https://developers.cloudflare.com/workers-ai/platform/limits/
http://pragprog.com/titles/apapps
http://forums.pragprog.com/forums/apapps

