
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Execute AI Models
It blows my mind how easy it is to use AI these days. Just a couple of years
ago, AI technologies felt like an alien concept; they were complex and required
specialized training for use. Fast forward to 2024, and the rapid development
of generative AI has democratized access to AI for everyone, regardless of their
background.

For your application, you’ll use the Resnet 50 model from Microsoft, an AI
model designed for image classification. When presented with an image, the
model provides a list of identified objects along with confidence scores. For
instance, uploading an image of a cat should result in the model recognizing
it as a cat, and in some cases, even specifying the breed.

Let’s use some AI, by first updating the environment to expect the AI binding.
Open env.d.ts and update CloudflareEnv to the following:

10-additional.ts
interface CloudflareEnv {

IMAGE_APP_UPLOADS: R2Bucket;
AI: any;

}

Cloudflare’s documentation defines the type as any, so I’ve followed suit. I
suspect in future there’ll be a defined type.

With the environment now expecting an AI binding to be injected at runtime,
you can update the server-side endpoint defined at src/app/api/files/route.ts to the
following:

10-update-server-side-endpoint.ts
import { getRequestContext } from '@cloudflare/next-on-pages'

export const runtime = 'edge';

export async function POST(request: Request) {
const bucket = getRequestContext().env.IMAGE_APP_UPLOADS;
const body = await request.formData();
const files = body.getAll('files');
const ai = getRequestContext().env.AI;
let imageAnalysis = [];

for(let x = 0; x < files.length; x++) {
const f = files[x] as File;
const uuid = crypto.randomUUID()

await bucket.put(uuid, f);

const blob = await f.arrayBuffer();

const inputs = {

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/apapps/code/10-additional.ts
http://media.pragprog.com/titles/apapps/code/10-update-server-side-endpoint.ts
http://pragprog.com/titles/apapps
http://forums.pragprog.com/forums/apapps

image: Array.from(new Uint8Array(blob))
};

imageAnalysis.push(
{

id: uuid,
name: f.name,
analysis: await ai.run('@cf/microsoft/resnet-50', inputs)

}
)

}

return new Response(JSON.stringify({results: imageAnalysis}), {
headers: { 'content-type': 'application/json' }

});
}

Whenever you want to use bindings in Pages projects, you need to import
getRequestContext to get access to them:

10-update-server-side-endpoint.ts
import { getRequestContext } from '@cloudflare/next-on-pages'

Then, to call a model, you use getRequestContext.env to access the environment
where bindings will be set:

10-update-server-side-endpoint.ts
const ai = getRequestContext().env.AI;
let imageAnalysis = [];

You also need to create an empty array, which will be populated later in the
function with the image analysis results that will be returned from the API.
With the bindings retrieved, you can now call the model for each image
uploaded:

10-update-server-side-endpoint.ts
const blob = await f.arrayBuffer();

const inputs = {
image: Array.from(new Uint8Array(blob))

};

imageAnalysis.push(
{

id: uuid,
name: f.name,
analysis: await ai.run('@cf/microsoft/resnet-50', inputs)

}
)

In order to call the Resnet 50 model, the image has to be converted to some-
thing a machine can understand. Therefore, you convert the image to a byte

• 4

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/apapps/code/10-update-server-side-endpoint.ts
http://media.pragprog.com/titles/apapps/code/10-update-server-side-endpoint.ts
http://media.pragprog.com/titles/apapps/code/10-update-server-side-endpoint.ts
http://pragprog.com/titles/apapps
http://forums.pragprog.com/forums/apapps

array using arrayBuffer, and then that is converted to an array of unsigned 8-
bit integers, which is something the model can understand.

With the input prepared, the final line in this section calls the Resnet 50
model, and pushes the results to the imageAnalysis array. When calling any AI
model on Cloudflare, you always call the run method, with the first parameter
being the model, and the second being the input. If you’re unsure how to
format the input for a given model, Cloudflare has code examples for every
model.1

Lastly, the server-side endpoint returns the image analysis results:

10-update-server-side-endpoint.ts
return new Response(JSON.stringify({results: imageAnalysis}), {

headers: { 'content-type': 'application/json' }
});

That’s all that’s required to call an AI model. Cloudflare has made it nearly
effortless to make use of such a powerful tool.

Your work isn’t done just yet though, as in order to see the model in action,
you need to update the frontend to render the image classification results.

Workers AI Limits

As with most things, there are limits. At the time of writing,
everyone gets 10,000 neurons free per day. A neuron is how
Cloudflare measures inputs across AI models. Roughly speaking,
10,000 neurons can generate 100-200 LLM responses, 500
translations, 500 seconds of speech-to-text audio, 10,000 text
classifications, or 1,500 - 15,000 embeddings depending on which
models you use.

Additionally, there are per-model limits in place. For example, the
Llama 2 model has a limit of 50 requests per minute, Whisper has
a limit of 4000 requests per minute, and the one you’re using in
this chapter, Resnet 50, allows up to 6000 requests per minute.

For a full list of limits by model, check out https://developers.cloud-
flare.com/workers-ai/platform/limits/.

1. https://developers.cloudflare.com/workers-ai/models/

• Click HERE to purchase this book now. discuss

Execute AI Models • 5

http://media.pragprog.com/titles/apapps/code/10-update-server-side-endpoint.ts
http://pragprog.com/titles/apapps
http://forums.pragprog.com/forums/apapps

