Serverless Apps
on Cloudflare

Build Solutions, Not Infrastructure

Ashley Peacock

edited by Michael Swaine

This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.


https://www.pragprog.com

CHAPTER 5

Worker-to-Worker Communication

Your API is almost complete, but there’s one thing we haven’t covered yet:
Worker-to-Worker communication.

In typical software architectures, when you’re not dealing with a monolith,
you'll likely need your services to talk to each other through API calls. With
serverless architectures, it’s not smart to squeeze everything into one Worker,
so truly monolithic apps are pretty rare.

If you've got multiple APIs contributing to your app, I'd suggest using multiple
Workers. Traditionally, these calls between services happen over HTTP, and
whether they’re private or public, they have to deal with network-related
issues like latency and failures.

But here’s the cool part with Cloudflare: Worker-to-Worker communication
is a breeze. Just like how you added a database as a dependency to the Photo
API using a binding, you can do the same with other Workers. They're called
service bindings.

When Cloudflare fires up a Worker with a service binding, it makes the second
Worker instantly available to the primary Worker. No latency, no delays, and
no worries about networking hiccups like you'd have with HTTP calls. In
software engineering, this is often called a zero-cost abstraction. In short,
this means it gives you benefits without any drawbacks.

Service bindings not only make your apps more reliable and less prone to
failures, compared to traditional HTTP calls, but they also promote compos-
ability and fine-grained Workers without any extra performance cost when
communicating between them. It really is a beautiful feature.

When one Worker sends a request over to another, the cost is straightfor-
ward—you just get billed for the CPU time that Worker uses; it doesn’t add
to your overall request count. This effectively makes service bindings free.

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/apapps
http://forums.pragprog.com/forums/apapps

o4

Now, to get the hang of making API calls between different Workers, you're
going to make one last change to your Photo API. You’ll add a second Worker
to bring some authentication into the mix. When you're dealing with multiple
APIs scattered across different Workers, this move makes it super easy to
apply consistent authentication across the board.

You're effectively creating a new Worker that behaves like middleware.

To understand how Worker-to-Worker calls function, let’s see them in action.

Create the Authentication Worker

You'll use the same steps as in Chapter 1, Deploy Your First Cloudflare

$ npm create cloudflare@2.21.1 -- --no-auto-update

I suggest running this one level above your photo-service Worker, so the
folder structure would look like this:

photo-service/

— .wrangler/

— migrations/

— node_nodules/

— src/

— test/
authentication-service/
— node_nodules/

— src/

When running the command, enter authentication-service for the directory, select
“Hello World” for the Worker type, yes to TypeScript, and yes to Git.

With the skeleton of the authentication Worker created, you can now add the
specific changes needed for the authentication Worker.

Make a Worker Private

In the case of the photo service, that API would be public facing. So when you
deploy to Cloudflare, you get a URL generated that allows you to hit it with
requests.

Sometimes, you might not want your service to be accessible to the outside
world. Take the authentication service, for example—no need for it to be out
there publicly since it's always called by a service binding.

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/apapps
http://forums.pragprog.com/forums/apapps

Make a Worker Private ® 5

Monorepo vs. Many Repos
There are two common approaches for arranging the pieces that
make up an application. The first is the approach we just used:
two separate folders, each with its own repositorOy under ver-
sion control. You'd make changes to each project individually,
and each would be deployed separately.

The alternative approach is called a monorepo: all the services
are stored together in a single repository. When you merge
changes to the monorepo, any services updated will all be
deployed. You may still need to deploy services in a certain
order, which can be handled by your deployment pipeline, but

ﬂ the trigger will be a single merge to the monorepo.

Monorepos can be slower to deploy, but you can mitigate a lot
of this by only deploying the individual services that were
changed. There’s a risk of compolexity: if you don’t keep it
organized, it can become unwieldy and complicated, with
dependencies often hard to work out and manage.

Which one is right for your project is going to come down to the
individual project. I'd recommend trying out both approaches,
and seeing which one works for you.

A monorepo is great for sharing code between projects, so an
alternative to my approach in this chapter would have authen-
tication logic as a library shared between your many APIs.

Making a Worker private is achieved by disabling the auto-generated URL,
which is a simple configuration change. Open wrangler.toml in your authentica-
tion Worker, and add the following line to the bottom:

workers dev = false

That’s all there is to it. If you now deploy this Worker, you'd see no URL was
generated based on your account’s subdomain, effectively making it private
and unreachable via the public internet.

When deploying to production, you’ll most likely want a custom domain
associated with the photo service. We cover that in Chapter 15, Deploy to

simply wouldn’t assign a custom domain.

With the Worker now private, let’s add the authentication logic.

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/apapps
http://forums.pragprog.com/forums/apapps

°6

Add Authentication Logic

The last change you need to make to the authentication service is to actually
add some authentication logic. Now, just a heads-up; you're keeping it dead
simple for this demo, but in the real world, I'd advise a more robust approach
like OAuth with JWT tokens for authentication.

We'll use a shared secret key to authenticate requests. Whoever’s calling the
API puts that secret key into the header of the HTTP request. The authentica-
tion service will then cross-check that header value with the secret key.

Let’s add the code to the Worker, inside of src/index.ts:

export interface Env {
API_AUTH KEY: String;
}

export default {
async fetch(
request: Request,
env: Env,
ctx: ExecutionContext
): Promise<Response> {
const api key = request.headers.get('x-api-auth-key');

if (api_key === env.API_AUTH KEY) {

return new Response('Authenticated', { status: 200 });
}
return new Response('Unauthorized', { status: 401 });

}
};

As you can see, the logic is straightforward. The Worker retrieves the x-api-auth-
key header, and compares it with the secret that’s stored in env.API_AUTH_KEY. If
it’s a match, the Worker returns a 200, if it’s not, it returns a 401.

You'll perhaps notice API_AUTH KEY defined in the Env interface at the top. But
how does that value get set?

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/apapps
http://forums.pragprog.com/forums/apapps

