Extracted from:

Creating Software with Modern
Diagramming Techniques
Build Better Software with Mermaid

This PDF file contains pages extracted from Creating Software with Modern Dia-
gramming Techniques, published by the Pragmatic Bookshelf. For more information
or to purchase a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2023 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Raleigh, North Carolina

http://www.pragprog.com

Th
Pr. ematic
OgraImmers

Creating Software
with Modern
Diagramming

Techniques
Build Better Software with Mermaid

A\

mlb\\f‘\,ﬂﬂ

4 "
|

A

Ashley Peacock
Edited by Michael Swaine

Creating Software with Modern
Diagramming Techniques
Build Better Software with Mermaid

Ashley Peacock

The Pragmatic Bookshelf

Raleigh, North Carolina

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin

COO: Janet Furlow

Managing Editor: Tammy Coron
Development Editor: Michael Swaine
Copy Editor: L. Sakhi MacMillan
Layout: Gilson Graphics

Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2023 The Pragmatic Programmers, LLC.

Allrights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-983-0
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—February 2023

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Creating a System Context Diagram

Let’s start with the highest-level view, the system context diagram. It is the
50,000-foot view, so contains the minimal level of detail of our architecture.
It should be nontechnical and simply acts to model the interactions between
users of the system you're designing and any other systems in play.

The litmus test you can use to determine if the level of detail is correct is
whether I could show it to my product manager, or anyone nontechnical, and
they would be able to understand what the diagram is trying to convey. If
they can, you know it’s the right level. It's not useful just for product managers
though; it’s key in understanding at a glance what your system’s key depen-
dencies are and how it undertakes its responsibilities.

Continuing on the journey of Streamy, we're going to design an architecture
for the service that is responsible for displaying the lists of titles available to
view on the platform. In essence, when a user goes to the platform, what does
the listings service need to do to show the titles, and how does it do it?

A second requirement is that when a title is displayed, the reviews for that
title are also displayed, and the user has the option to submit a review for
that title if they wish.

Thirdly, listings are great, but the user should also be able to search for
specific titles if they want to watch a particular one.

Finally, other engineering teams at Streamy have been busy creating services
to support the upcoming launch. Three services are already available for us
to use: a title service, a review service, and a search service.

In a real-world scenario, this kind of information would be either readily
known by you or your team or it would be discovered as part of this exercise.

As mentioned in Using the C4 Model, on page ?, there are three main ele-

ments in a system context diagram:

e People
* Your software system (that you are designing)
e Supporting software systems

Let’s work from top to bottom and start forming our system context diagram.
We'll be using a flowchart, supported by Mermaid. Flowcharts are extremely
versatile and, unlike the prior diagrams we covered, don’t have a single use
case. We're going to use them to create C4 diagrams, but you could also
use them to diagram a business use case, as they support branched logic

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/apdiag
http://forums.pragprog.com/forums/apdiag

°6

quite well. If you need to create something that doesn'’t fit in any of the use
cases covered in this book, you can likely create it using a flowchart.

We now understand what we're trying to accomplish and how we plan to do
it, so let’s get started!

Add Nodes

Let’s get started by defining a flowchart and our first element, the user:

flowchart TD
User["Premium Member
[Person]

A user of the website who has
purchased a subscription"]

Nodes also support adding in new lines (\n) in text, which I prefer to use rather
than actual new lines in the diagram’s code, as I find it harder to read. The
lines aren’t actually that long, but for a book, they need to be smaller, so I've
used this format.

Once generated, it looks like the image shown on page 7.

In this example only one person is being shown, but it’s not uncommon to
have multiple users interacting with your system in different ways, so make
sure to include everyone.

As with all Mermaid diagrams, the first line defines the type of diagram we're
creating—in our case, flowchart. There’s an optional parameter you can define
after flowchart that defines the direction, which accepts the following options:

e TB: top-to-bottom

e TD: top-down (same as top-to-bottom)
e BT: bottom-to-top

* RL: right-to-left

LR: left-to-right

We'll be using top-down as that suits our use case.

The second line defines a node in our flowchart. You can think of this like
defining a class before you use it in your codebase: the node is only defined
once and then used where it’s needed later on. This allows you to define certain
characteristics for a node once, and it will be used automatically throughout
the flow.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/apdiag
http://forums.pragprog.com/forums/apdiag

Add Nodes ¢ 7

Premium Member
[Person]

A user of the website who has
purchased a subscription

All node definitions follow the format id["Label / Description"]. The ID is the reference
you’ll use when defining the interactions later on, so I tend to keep them
short, and the label/description is the text that goes in the box that’s rendered.

Following Simon Brown’s notation, each node should contain a title, label,
and description. The title should clearly outline the node, the label is what
type the node is, and the description briefly describes what that node repre-
sents. At this level, the label is perhaps superfluous, but in more detailed
views that follow, it’s essential, and I like to keep the layout consistent between
the different levels of the C4 model.

We can’t make much of a diagram with just a single node, so next we add
our system—the system we're designing and documenting with the C4 model.
The Mermaid definition now looks like this:

flowchart TD
User["Premium Member
[Person]

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/apdiag
http://forums.pragprog.com/forums/apdiag

°8

A user of the website who has
purchased a subscription"]

LS["Listings Service
[Software System]

Serves web pages displaying title
listings to the end user"]

As nothing is connected yet, we now have two isolated nodes displayed:

Premium Member Listings Service
[Person] [Software System]
A user of the website who has Serves web pages displaying title
purchased a subscription listings to the end user

Nodes on their own don’t provide much value though, so let’s try connecting
these nodes.

Connect Nodes

Now the fun begins! We can connect our two nodes in a flowchart using a
variety of arrows, but for a system context diagram we just need simple solid
arrowheads that show dependencies. We can add an interaction between
nodes like so:

flowchart TD

User["Premium Member
[Person]

A user of the website who has\npurchased a subscription"]

LS["Listings Service
[Software System]

Serves web pages displaying title
listings to the end user"]

User-- "Views titles, searches titles\nand reviews titles using" -->LS

You can define arrows in two different styles, so pick your preference. We can
use the one shown previously that follows the format ParentNode-- "arrow label" --
>ChildNode, or we can use the format ParentNode-->|"arrow label"|ChildNode. I person-
ally find the former easier to read, but both work in exactly the same way.
The double quotes are optional but are required later on for more detailed
labels, so you’ll want to get into the habit of using them now.

If we generate this diagram, we can now see the two nodes linked, as shown

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/apdiag
http://forums.pragprog.com/forums/apdiag

Connect Nodes ® 9

Premium Member
[Person]

A user of the website who has
purchased a subscription

Views titles, searches titles
and reviews titles using

Listings Service
[Software System]

Serves web pages displaying title
listings to the end user

I've modeled the arrows as dependencies, so for the arrow label I simply
describe what the parent node relies on from the child node. You don’t need
to go into large amounts of detail, especially at this level, so try to keep the
descriptions brief.

We now have the people interacting with our system. And our new system,
on the system context diagram, just one more thing is left to add: supporting
systems. These are any systems that your system interacts with and that are
required for it to do its job. They can be other internal systems or external
systems provided by another company, such as Salesforce if you use that for
your customer relationship management (CRM).

In our case, we determined earlier (Creating a System Context Diagram, on

at Streamy: the title service, the review service, and the search service, so
let's add them to our system context diagram.
flowchart TD

User["Premium Member
[Person]

A user of the website who has
purchased a subscription"]

LS["Listings Service
[Software System]

Serves web pages displaying title
listings to the end user"]

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/apdiag
http://forums.pragprog.com/forums/apdiag

°10

TS["Title Service
[Software System]

Provides an API to retrieve
title information"]

RS["Review Service
[Software System]

Provides an API to retrieve
and submit reviews"]
SS["Search Service

[Software System]

Provides an API to search
for titles"]

User-- "Views titles, searches titles\nand reviews titles using" -->LS
LS-- "Retrieves title information from" -->TS

LS-- "Retrieves from and submits reviews to" -->RS

LS-- "Searches for titles using" -->SS

Once generated, we have a completed system context diagram!

Premium Member
[Person]

A user of the website who has
purchased a subscription

Views titles, searches titles
and reviews titles using

Listings Service
[Software System]

Serves web pages displaying title
listings to the end user

Retrieves title information from Retrieves from and submits reviews to Searches for titles using

Title Service Review Service Search Service
[Software System] [Software System] [Software System]
Provides an API to retrieve Provides an API to retrieve Provides an API to search

title information and submit reviews for titles

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/apdiag
http://forums.pragprog.com/forums/apdiag

Connect Nodes ® 11

Using this diagram, both technical and nontechnical colleagues can under-
stand at a high level who uses your system, what your system does, and how
it does it in combination with other systems. That documentation alone is
probably more detailed than most repository READMESs and will answer sev-

eral initial questions anyone has when they want to know about your new
system.

Do you remember that for class diagrams you can add links to nodes? You can do

exactly the same for flowcharts, using exactly the same syntax!

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/apdiag
http://forums.pragprog.com/forums/apdiag

