Extracted from:

Creating Software with Modern
Diagramming Techniques
Build Better Software with Mermaid

This PDF file contains pages extracted from Creating Software with Modern Dia-
gramming Techniques, published by the Pragmatic Bookshelf. For more information
or to purchase a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2023 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Raleigh, North Carolina


http://www.pragprog.com

Th
Pr. ematic
OgraImmers

Creating Software
with Modern
Diagramming

Techniques
Build Better Software with Mermaid

A\

mlb\\f‘\,ﬂﬂ

4 "
|

A

Ashley Peacock
Edited by Michael Swaine






Creating Software with Modern
Diagramming Techniques
Build Better Software with Mermaid

Ashley Peacock

The Pragmatic Bookshelf

Raleigh, North Carolina



Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin

COO: Janet Furlow

Managing Editor: Tammy Coron
Development Editor: Michael Swaine
Copy Editor: L. Sakhi MacMillan
Layout: Gilson Graphics

Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2023 The Pragmatic Programmers, LLC.

Allrights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-983-0
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—February 2023


https://pragprog.com
support@pragprog.com
rights@pragprog.com

In the following chapters, we're going to go through the life cycle of creating
an application from scratch. We won't be writing any application code, but
we will be documenting the important steps with diagrams. I've written the
chapters roughly in the order I would go about each step in my professional
career, but you may find a slightly different order works for you.

To start off, we're going to create a domain model. Domain modeling is the
primary way of determining the important aspects of a business. It’'s usually
created collaboratively by engineering, product, and business stakeholders
to ensure all major parts of the business are aligned on what the domain
model looks like.

That makes it a good candidate for diagramming. By documenting your domain
models with a diagram, that domain model is going to come to life and is more
likely to be practiced. Furthermore, due to the ease of Mermaid, it’s possible
to create a draft of the domain model in real time when discussing with col-
leagues in a meeting.

I recommend reading Domain-Driven Design: Tackling Complexity in the Heart

Once you've got to grips with domain modeling, it's going to make your life
so much easier. There will be moments during domain modeling where sud-
denly it all comes together, everyone is on the same page in terms of their
understanding of the landscape, and everyone is speaking the same language.

The most powerful use of DDD I've experienced was working for an insurance
company. The team I was working in had been tasked with creating a way to
determine how exactly our products were sold and to whom—sounds easy,
right? Unfortunately, the data was all over the place, and customers could
use many avenues to make a purchase, with varying data available in each
avenue. None of us had any idea how to represent these conceptions in our
code, so we spent several days domain modeling. We tried out different ideas
and approaches, and in the end we landed on a culmination of a few different
ideas and were able to easily translate the domain model into code.

I find the biggest power that comes from domain modeling is the collaboration,
how it brings everyone on the journey and ultimately to the same destination.
It becomes easy to talk about what we are working on, as we're all speaking
the same language, and the code flows easily because we have a clear idea
of how we should represent these business requirements using our domain
model. By the end of the project, even nontechnical stakeholders were using
the same terminology that we had come up with while domain modeling.

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/apdiag
http://forums.pragprog.com/forums/apdiag

2

The final selling point I'll make for DDD is its ability to allow your domain
and code to evolve over time. Because we're documenting our domain model,
we can reference it at any point. It's very common for new requirements to
come along later, at which point we can refer back to the domain model, see
if it fits the new requirements, and if not, it can evolve and adjust as necessary.
The core of the domain we modeled at the insurance company is still intact
today but has since evolved to add new entities and use cases.

Within UML, one type of diagram available to us is called a class diagram. It
can be used to model classes, but it can also be used to model domains,
which makes a lot of sense when you consider your domain model is imple-
mented in your codebase with classes. The real power of the diagram is realized
when we start to model relationships between entities, which we can easily
do with a UML class diagram.

Determine the Important Entities

Firstly, when creating your domain model, think of all the important entities
within your business. For those unfamiliar with the term, an entity represents
a core concept within the business. Entities are typically the phrases that
are most used in the codebase and in meetings. A book publisher, for example,
would likely have entities such as book, chapter, and author. We won’t be
going to this level of detail, but in your codebase they would contain entity
data and business logic. Continuing the publishing example, a book would
have a title for data and perhaps some business logic that calculates the word
count.

The fictional company I'll be using through these chapters is called Streamy,
which is trying to make a name for itself in the video streaming industry.

I would say for a video streaming company, its most important entity is likely
to be Title—representing the actual videos Streamy offers their customers.

Once you've thought of an entity, what related entities might you have?

Typically, each Title will belong to a Genre, and each Genre will have a list of Titles
associated with it. We’ve now identified two entities and how those two entities
are related to one another, so we can start to form our domain model next.

Domain-Driven Design

Alongside domain modeling sits domain-driven design (DDD), which is a methodology
not only for determining the domain model but keeping that domain model alive in
the codebases you work on by ensuring the entities in your domain model are repre-
sented in your codebase.

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/apdiag
http://forums.pragprog.com/forums/apdiag

Document Our First Relationship ¢ 3

If you're not familiar with either construct, I highly recommend reading about them
after reading this book, but even without knowing DDD in depth, you can have a go
at creating a domain model later in the chapter.

4
Document Our First Relationship

Now that we understand what domain-driven design is and what it’s used
for, we can begin to create a domain model for Streamy.

We're going to use Mermaid to create our domain model, and adding these
two entities is super-simple:

classDiagram
Title -- Genre

That’s it—our first two entities are defined! If we generate the diagram, it
looks like this:

Title

Genre

In Mermaid, the markup for any diagram (with the exception of adjusting
configuration, which we will cover later) is the type of diagram you wish to
create. In our case, that’s a classDiagram, which informs Mermaid how to format
and interpret the following lines.

When creating a domain model in UML, each line after the initial line documents
a relationship between two entities. In the case of Title and Genre, where each
entity is going to hold a reference to the other, that type of relationship is known
as an association. In Mermaid, that’s where the second line comes in:

Title -- Genre

To define any relationship, we write down the two entities separated by a set
of symbols that define the type of relationship. An association is defined using
two hyphens. Let’s look at associations in more detail.

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/apdiag
http://forums.pragprog.com/forums/apdiag

o4

Define Associations

Association is the first type of relationship we’ll cover, and it’s the loosest
type of relationship available within a UML class diagram. Usually, for a
relationship to be classed as an association, the entities must be able to exist
independently of one another and likely have their own life cycles. Further-
more, there is generally no “owner” of the relationship for associations, they're
simply linked. In that way, you can think of their relationship as “using” one
another rather than one owning the other.

In our case of Title and Genre, we could have a page on our application that
just shows Genres without any Titles. However, we probably want to be able to
list the Titles within a Genre, and display a specific Title’s Genre too, so they need
to have a link of some sort, as all relationships must be documented in a
domain model.

Associations are very loose ways to link two entities, but some relationships
form a closer bond between two entities. Let’s look at one next.

Define Composite Relationships

Once you have your first two entities defined, think of other entities that relate
to either of them. We're going to focus on Title, as that’s our main entity. I can
think of two related entities:

e Season
e Review

These two entities don’t suit an association, though. Similarly to associations,
we have to think about how each of these behave in relation to Title. They don’t
make sense on their own like an association, and without Title, they probably
make no sense at all in our domain. After all, if we deleted Title, it would be
impossible to have either of these exist. For example, you can’t have a Season
for a nonexistent Title, and the same is true for Review.

This type of relationship is called composition, and we can document it as
follows in Mermaid, using an asterisk and two hyphens:

classDiagram
Title -- Genre
Title *-- Season
Title *-- Review

And if we generate the diagram, it looks like so:

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/apdiag
http://forums.pragprog.com/forums/apdiag

Define Composite Relationships ® 5

Title

!

Genre Season Review

Notice the difference between the different classes. Title and Genre are linked
via a solid line with no arrows, whereas Title and Season have a solid diamond
on the line connecting them, which signifies the relationship is composition.

The side the diamond is on indicates the class holding the reference, but you
can think of it similarly to a parent and child relationship, where the diamond
signifies the parent, as the child cannot exist without the parent. Unlike
associations, the parent is the owner of the relationship.

While Mermaid will allow you to write the relationships in either direction (for example,
“*-* and “—*), I recommend always putting the parent on the left for easier readability
and less cognitive load of working out the direction of the relationship, as you can
just read from left to right.

To complete the composite relationships we need for our domain model, a
Season isn’t much use without its counterpart Episode. Much like our other
composite relationships, an Episode probably doesn’t make much sense without
belonging to a Season. Once adding our final composite relationship, our Mer-
maid code looks like so:

classDiagram
Title -- Genre
Title *-- Season
Title *-- Review

Season *-- Episode

While the layout is totally up to you and personal preference, I prefer to group
each entity’s relationships together and separate the groups with an empty
line to aid readability.

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/apdiag
http://forums.pragprog.com/forums/apdiag

°6

Domain-driven design is very opinionated, so keep in mind you might not model my
examples like this if you were creating them. The model itself isn’t the important part,
at least in the context of this book—the syntax and the diagrams themselves are.

We now know two relationship types:

e Associations, which are two entities that are loosely related and can exist
independent of one another.

e Compositions, which indicate two entities are tightly related and cannot
exist independently of one another.

One more, though, sits between those two in terms of how closely related two
entities are. We'll cover that in the next section.

Define Aggregate Relationships

Our domain model is starting to take form, but it’s still missing a few key
entities. After all, doesn’t everyone like to know the Actors that appear in a
Title?

But this entity doesn’t suit a composite relationship. While knowing the Actors
is definitely handy, Title could exist without Actors, and similarly an Actor can
exist independently of a Title (or belong to many Titles, so if one was deleted,
they’d perhaps exist on another, so would remain in place).

Let’s update our Mermaid code to add Actor:

classDiagram
Title -- Genre
Title *-- Season
Title *-- Review
Title o-- Actor

Season *-- Episode

The syntax for aggregate relationships is o- (the letter o followed by two
hyphens), and once generated this is how they are rendered:

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/apdiag
http://forums.pragprog.com/forums/apdiag

Define Aggregate Relationships ¢ 7

Title

AR

Genre Season Review Actor

!

Episode

An aggregate relationship is also displayed as a diamond, but instead of being
a solid diamond, it's empty. In an aggregate relationship, there’s still an
owner—the parent. However, the bond between them isn’t as strong as a
composite relationship, and if the parent were to be deleted, the child can
still exist.

As mentioned at the start of the chapter, choices of how to model a domain
can vary greatly between companies or colleagues. In another domain model,
perhaps you group Actors into a Cast for example. That would change the type
of relationship, perhaps, to a composite relationship, as a Cast created for a
Title probably wouldn’t remain if the Title were deleted.

Now that we know the main three types of relationship we can use, let's
consider when to use each one.

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/apdiag
http://forums.pragprog.com/forums/apdiag

