Extracted from:

Creating Software with Modern
Diagramming Techniques
Build Better Software with Mermaid

This PDF file contains pages extracted from Creating Software with Modern Dia-
gramming Techniques, published by the Pragmatic Bookshelf. For more information
or to purchase a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2023 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Raleigh, North Carolina


http://www.pragprog.com

Th
Pr. ematic
OgraImmers

Creating Software
with Modern
Diagramming

Techniques
Build Better Software with Mermaid

A\

mlb\\f‘\,ﬂﬂ

4 "
|

A

Ashley Peacock
Edited by Michael Swaine






Creating Software with Modern
Diagramming Techniques
Build Better Software with Mermaid

Ashley Peacock

The Pragmatic Bookshelf

Raleigh, North Carolina



Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin

COO: Janet Furlow

Managing Editor: Tammy Coron
Development Editor: Michael Swaine
Copy Editor: L. Sakhi MacMillan
Layout: Gilson Graphics

Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2023 The Pragmatic Programmers, LLC.

Allrights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-983-0
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—February 2023


https://pragprog.com
support@pragprog.com
rights@pragprog.com

Devise a Plan of Action

Before we delve into creating an action, let’s take a step back and look at
what exactly we need to do to achieve our outcome. As a reminder, we want
any Markdown files that are in a specific folder (in this example it will be /docs)
to be uploaded to GitHub Pages, with any Mermaid markup converted to
display the diagram as an image. We'll see it in action later, but Mermaid
comes with a CLI that will do all of the heavy lifting for us. We can simply
give the CLI a Markdown file containing Mermaid markup; it will generate
SVGs from that markup and update the Markdown to reference the SVG
rather than the Mermaid markup.

Here are what I believe to be the steps we need to take, and what better way
to show them than in the diagram shown on page 6?

We'll go through each step in detail as we build the action, but I'll briefly
touch on each one first:

1. We only want our action to trigger in certain scenarios. For our action,
it’s when code is pushed to the main branch (likely when a PR is merged,
but you can commit straight to main too).

2. We can’'t do much without our repository, so we need to check out the
repository so the action has access to it.

3. Then we need to find any Markdown files and convert any Mermaid
markup in them to SVGs.

4. We'll be using Jekyll, which is a simple static site generator, to host our
site on GitHub Pages. We're using this simply because GitHub has native
support for Jekyll-based sites. The build step prepares the files as Jekyll
expects them.

5. Penultimately, we upload the prepared build artifacts from the prior step
ready to be deployed.

6. Finally, we use the uploaded build artifacts to deploy them to our GitHub
pages site.

If you're not familiar with GitHub Actions, or GitHub Pages, it may not be
immediately obvious how to do any of these steps. Don’t worry, though; it’ll
be much simpler than it sounds, and we won’t even need to write much
actual code to achieve it!

You may have noticed that the preceding diagram is a very simple flowchart,
of course created using Mermaid. This is a throwaway diagram, in that it’s

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/apdiag
http://forums.pragprog.com/forums/apdiag

°6

Check event type is a PR being
merged to the main branch

Checkout Repository

Convert Mermaid markup in Markdown to SVGs

Build Jekyll Pages

Upload Build Artifacts

Deploy To GitHub Pages

just to visualize the steps I needed to take. Not all diagrams have to be a work
of art or be complex. Sometimes it can help to just take a step back and
visualize what it is you need to do.

Learn the Basics of a GitHub Action

Ready? Let’s get started!

As opposed to other chapters where you completed an exercise at the end, this time
treat this as a step-by-step tutorial to creating your first GitHub Action. As I take you
through the steps, follow along using your own GitHub account.

First, we need to create a brand-new action. GitHub makes this super-simple;
you go to a repository (or create a new one—remember it has to be public!),

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/apdiag
http://forums.pragprog.com/forums/apdiag

Learn the Basics of a GitHub Action ® 7

click the Actions tab at the top, click the new workflow button, and finally
select Simple Workflow. Each action you create can be thought of as a work-
flow, a series of steps to take to complete a given task.

You should now have something like the following:

# This is a basic workflow to help you get started with Actions
name: CI

# Controls when the workflow will run
on:
# Triggers the workflow on push or pull request events
# but only for the "main" branch
push:
branches: [ "main" ]
pull request:
branches: [ "main" ]

# Allows you to run this workflow manually from the Actions tab
workflow dispatch:

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/apdiag
http://forums.pragprog.com/forums/apdiag

°8

# A workflow run is made up of one or more jobs
# that can run sequentially or in parallel
jobs:
# This workflow contains a single job called "build"
build:
# The type of runner that the job will run on
runs-on: ubuntu-latest

# Steps represent a sequence of tasks that
# will be executed as part of the job
steps:

# Checks-out your repository

# so your job can access it

- uses: actions/checkout@v3

# Runs a single command using the runners shell
- name: Run a one-line script
run: echo Hello, world!

# Runs a set of commands using the runners shell
- name: Run a multi-line script
run: |
echo Add other actions to build,
echo test, and deploy your project.

This is the basic structure for any GitHub Action and comes full of helpful
comments. For anyone not familiar, the configuration is defined using YAML,
which is a human-friendly data serialization format.

I'll add a little more information to some of the sections, starting with control-
ling when the workflow will run. This is defined by this section:

on:
# Triggers the workflow on push or pull request events
# but only for the "main" branch
push:
branches: [ "main" ]
pull request:
branches: [ "main" ]

Under on, we can list any number of GitHub Events' to trigger an action. In
this case, it will trigger when code is pushed and when anything happens to
a pull request (for example, opened or closed, but there are many more). We
can further refine, for each event, when to trigger an action. In this example,
the action will only get triggered on the “main” branch. GitHub’s documenta-
tion contains all the possible events and the filter options for each event.

1. https://docs.github.com/en/actions/using-workflows/events-that-trigger-workflows

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/apdiag
http://forums.pragprog.com/forums/apdiag

Learn the Basics of a GitHub Action ® 9

Next, we define the jobs we want to run for this action and what operating
system to run them on:

# A workflow run is made up of one or more jobs
# that can run sequentially or in parallel
jobs:
# This workflow contains a single job called "build"
build:
# The type of runner that the job will run on
runs-on: ubuntu-latest

Under jobs, you can list as many jobs as you like. In the example action, there’s
just one—build, which runs on Ubuntu. Other operating systems are available,’
including Windows and Mac, but they’re more expensive. You could run all
your actions with a single job, but there are efficiency gains from defining
multiple and parallelizing the jobs where possible, as any number of jobs can
run in a single workflow in parallel.

A classic example of this would be deployments. We might want to run our
test suite and at the same time build the Docker container ready for deploy-
ment. We could do them sequentially, but it would be a lot faster to run them
in parallel. Similarly, if we're deploying multiple elements, for example a web
app and a Kafka consumer, we can possibly do so in parallel.

Finally, each job can have any number of steps to complete that job, as shown
in the example:

# Steps represent a sequence of tasks that
# will be executed as part of the job
steps:

# Checks-out your repository

# so your job can access it

- uses: actions/checkout@v3

# Runs a single command using the runners shell
- name: Run a one-line script
run: echo Hello, world!

Unlike jobs, steps cannot run in parallel at this time and always run
sequentially. Each step can run commands, same as you would in your ter-
minal, or leverage another GitHub Action to run. GitHub itself provides many
actions for you to use. In our first step we're using their checkout action,
which checks out the repository’s code, so that our action has access to the
codebase. In the second step, it simply outputs some text by executing code

2. https://docs.github.com/en/actions/using-github-hosted-runners/about-github-
hosted-runners#supported-runners-and-hardware-resources

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/apdiag
http://forums.pragprog.com/forums/apdiag

°10

against the runner’s shell. GitHub’s documentation® is extensive and can
explain every possible workflow configuration option. I've covered the basics
we’ll need.

3. https://docs.github.com/en/actions/using-workflows /workflow-syntax-for-github-
actions

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/apdiag
http://forums.pragprog.com/forums/apdiag

