
Extracted from:

Your Code as a Crime Scene
Use Forensic Techniques to Arrest Defects,

Bottlenecks, and Bad Design in Your Programs

This PDF file contains pages extracted from Your Code as a Crime Scene, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2015 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Your Code as a Crime Scene
Use Forensic Techniques to Arrest Defects,

Bottlenecks, and Bad Design in Your Programs

Adam Tornhill

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Fahmida Y. Rashid (editor)
Potomac Indexing, LLC (indexer)
Cathleen Small (copyeditor)
Dave Thomas (typesetter)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-038-7
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—March 2015

https://pragprog.com
rights@pragprog.com

CHAPTER 8

Detect Architectural Decay
In the previous chapter, you learned how temporal coupling detects hidden
dependencies in your system. Now it’s time to learn how to perform an anal-
ysis of temporal coupling on your code.

In this chapter, we’ll analyze two systems of different sizes. The smaller project
shows how temporal coupling can still give us fresh insights into the design
even when we’re very familiar with the code. The larger project shows how to
detect architectural decay so that we can make improvements early in the
process. You’ll also see that the structures you’re working with aren’t always
aligned with the official architecture.

Let’s see how information-rich the change patterns in a system can be for
our analysis.

Support Your Redesigns with Data
I once worked on a project with severe problems in its database access.
Changes were awkward, they took longer than they should, and bugs swarmed
like mosquitoes at a Swedish barbecue.

Learning from mistakes is important, so I decided to redesign the worst parts
of the database layer. Something interesting happened. Even though the
database layer was in better shape, developers still complained about how
fragile and unstable it was. Changes still broke unrelated features. What went
wrong? Did I mess up?

While the database improved, it turned out that wasn’t where the true prob-
lems were. The database was just the messenger subtly warning us about
temporal coupling (and we shot the messenger).

Other parts of the system unexpectedly depended on the data storage. The
true problem was in automatic system tests. A minor change to the data format

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/atcrime
http://forums.pragprog.com/forums/atcrime

triggered a cascade of changes to the test scripts. This wasn’t obvious because
the scripts didn’t explicitly call the database code.

After reading the previous chapter, you now can see how a temporal coupling
analysis could’ve helped us find this problem earlier. Redesigns are about
minimizing risk and prioritizing areas of code that have the largest impact
on the work we’re doing now. Get it wrong like we did, and you will miss an
opportunity to make genuine improvements to your code. Let’s see how we
can use temporal coupling to avoid these mistakes.

Analyze Temporal Coupling
In Chapter 7, Treat Your Code As a Cooperative Witness, on page ?, we said
that temporal coupling can be an interview tool for your codebase. The first
step in an interview is to know who you should talk to.

Let’s use sum of coupling analysis to find our first code witness.

Use Sum of Coupling to Identify the Modules to Inspect
You’ve already seen that there are different reasons for modules to be coupled.
Some couples, such as a unit and its unit test, are valid. So modules with
the highest degree of coupling may not be the most interesting to us. Instead,
we want modules that are architecturally significant. A sum of coupling
analysis finds those modules.

Sum of coupling looks at how many times each module has been coupled to
another one in a commit and sums it up. For example, in the following figure,
you see that module app.clj changed with both core.clj and project.clj in Commit
#1, but just with core.clj in Commit #2. Its sum of coupling is three.

The module that changes most frequently together with others must be
important and is a good starting point for an investigation. Let’s try it out on

Chapter 8. Detect Architectural Decay • 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/atcrime
http://forums.pragprog.com/forums/atcrime

Code Maat by reusing the the logfile we mined in Chapter 3, Creating an
Offender Profile, on page ?.

Move into the top-level directory in your Code Maat repository and type the
following command:

prompt> maat -l maat_evo.log -c git -a soc
entity,soc
src/code_maat/app/app.clj,105
test/code_maat/end_to_end/scenario_tests.clj,97
src/code_maat/core.clj,93
project.clj,74
...

You can see that this command uses the same format we saw in the earlier
hotspot analysis. The only difference is that we’re requesting -a soc (sum of
coupling) instead.

We see that app.clj changes the most with other modules. Let’s keep an eye on
app.clj as we dive deeper.

Measure Temporal Coupling
At this point you know that app.clj is the module with the most temporal cou-
pling. The next step is to find out which modules it’s coupled to. We use Code
Maat for this analysis:

prompt> maat -l maat_evo.log -c git -a coupling
entity,coupled,degree,average-revs
src/code_maat/parsers/git.clj,test/code_maat/parsers/git_test.clj,83,12
src/code_maat/analysis/entities.clj,test/code_maat/analysis/entities_test.clj,76,7
src/code_maat/analysis/authors.clj,test/code_maat/analysis/authors_test.clj,72,11
...

The command line is identical to the one you just used, with the exception
that we’re requesting -a coupling instead. The resulting .CSV output contains
plenty of information:

1. entity: This is the name of one of the involved modules. Code Maat always
calculates pairs.

2. coupled: This is the coupled counterpart to the entity.
3. degree: The degree specifies the percent of shared commits. The higher

the number, the stronger the coupling. For example, git.clj and git_test.clj
change together in 83 percent of all commits.

4. average-revs: Finally, we get a weighted number of total revisions for the
involved modules. The idea here is that we can filter out modules with
too few revisions to avoid bias.

• Click HERE to purchase this book now. discuss

Analyze Temporal Coupling • 7

http://pragprog.com/titles/atcrime
http://forums.pragprog.com/forums/atcrime

You see a typical pattern in the output: each unit changes together with its
unit test (e.g. git.clj and git_test.clj, entities.clj and entities_test.clj).

This kind of temporal coupling is expected and not a problem. Code Maat
was developed with test-driven development, so I’d say that getting any other
result would’ve been a problem. Just plain old physical coupling—nothing
too exciting here.

Things get interesting a bit farther down:

prompt> maat -l maat_evo.log -c git -a coupling
...
src/code_maat/app/app.clj,src/code_maat/core.clj,60,23
src/code_maat/app/app.clj,test/code_maat/end_to_end/scenario_tests.clj,57,23
...

We see that app.clj changed with core.clj 60 percent of the time and with sce-
nario_tests.clj 57 percent of the time. There’s no way to tell why just from the
names alone, but 60 percent is a high degree of coupling. We are talking
about every second (or so), change in app.clj triggering a change in two other
modules. That can’t be good. Let’s investigate why.

Check Out the Evolution Radar

In a large codebase, a temporal coupling analysis sparks an
explosion of data. Code Maat resolves that by allowing us to
specify optional thresholds. The research tool Evolution Radar1

takes a different approach and lets us zoom in and out to the level
of detail we’re interested in. So check out the tool and take inspi-
ration.

Investigate Temporal Couples
Once we make such a finding, we need to drill down into the code. Because
all changes are recorded in our version-control system, we can perform a diff
on the modules. I’d recommend focusing on the shared commits and look for
recurring modification patterns within those commits.

Code Maat is written in Clojure. Although an exciting language, it’s far outside
the scope of this book. So let’s stay with temporal coupling, and allow me to
walk you through the design to spot the problems.

1. http://www.inf.usi.ch/phd/dambros/tools/evoradar.php

Chapter 8. Detect Architectural Decay • 8

• Click HERE to purchase this book now. discuss

http://www.inf.usi.ch/phd/dambros/tools/evoradar.php
http://pragprog.com/titles/atcrime
http://forums.pragprog.com/forums/atcrime

I’m a bit ashamed to admit that core.clj is the command-line interface of Code
Maat. (I changed it later to a better name.) It parses the arguments you give
it, converts them to a Clojure representation, and forwards them to app.clj.

app.clj glues the program together by mapping the given arguments to the
correct invocations of parsers, analyses, and output formats. As you can see,
the program arguments cause the coupling; every time a new argument is
added, two distinct modules have to evolve to know about it.

So, your first takeaway is actually a reminder about the power of names that
you learned about in Chapter 5, Judge Hotspots with the Power of Names, on
page ?. With proper naming, we’d have a better entry point for our manual
code inspection. Second, we failed to encapsulate a concept that varies. If we
extract the knowledge of all command-line arguments from app.clj, we break
the coupling and make the code easier to evolve and maintain.

Use Temporal Coupling for Design Insights
The analysis on Code Maat illustrates how we can use temporal coupling
analysis on small projects. Code Maat (which I wrote to learn Clojure during
my daily commute) is a single-developer project with less than 2,000 lines of
code.

Such small projects don’t need a hotspot analysis. We already know which
modules are hard to change. Temporal coupling is different because it provides
insights into our design. We get active feedback on our work so that we can
spot improvements we hadn’t even thought of.

Keep Your Temporal Coupling Algorithms Simple
The algorithm we’ve used so far isn’t the only kid in town. Temporal coupling
means that some entities change together over time. But there isn’t any formal

• Click HERE to purchase this book now. discuss

Analyze Temporal Coupling • 9

http://pragprog.com/titles/atcrime
http://forums.pragprog.com/forums/atcrime

definition of what change together means. In research papers, you’ll find
several alternative measures.

One typical alternative adds the notion of time to the algorithm; the degree
of coupling is weighted by the age of the commits. The idea is to prioritize
recent changes over changes in the more distant past. A relationship thus
gets weaker with the passage of time. However, as you’ll see soon when we
discuss software defects, a time parameter doesn’t necessarily improve the
metric.

The algorithm that Code Maat implements, the percent of shared commits,
is chosen because when faced with several alternatives that seem equally
good, simplicity tends to win. The Code Maat measure is straightforward to
implement and, more importantly, intuitive to reason about and verify.

Home

Crime

Crime

Distance Decay

Circle Hypothesis

Interestingly enough, simplicity may
win in criminal investigations, too. In
a fascinating study, researchers
trained people on two simple heuris-
tics for predicting the home location
of criminals:

• Distance decay: Criminals do not
travel far from their homes to
offend. Thus, crimes are more
likely closer to an offender’s home
and less likely farther away.

• Circle hypothesis: Many serial
offenders live within a circle
defined by the criminals’ two far-
thest crime locations.

Using these simple principles allowed the participants to predict the likely
home location of serial killers with the same accuracy as a sophisticated
geographical profiling system. (See Applications of Geographical Offender
Profiling [CY08].) We build the techniques in this book on the same kind of
simplicity.

Know the Limitations of Temporal Coupling
Our simple definition of temporal coupling as modules that change in the
same commit works well. Often, that definition takes us far enough to identify
unexpected relationships in our system. But in larger organizations, our

Chapter 8. Detect Architectural Decay • 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/atcrime
http://forums.pragprog.com/forums/atcrime

measure is too narrow. When multiple teams are responsible for different
parts of the system, the temporal period of interest is probably counted in
days or even weeks. We’ll address this problem in Chapter 12, Discover
Organizational Metrics in Your Codebase, on page ?, where you’ll learn to
group multiple commits into a logical change set based on a custom timespan.

Another problem with the measure is that we’re limited to the information
contained in commits. We may miss important coupling relationships that
occur between commits. The solution to this problem requires hooks into our
text editors and our IDE to record precise information on our code interactions.
Tools like that are under active research.

Yet another bias is moving and renaming modules. While version-control
systems track renames, Code Maat does not. (If I ever turn Code Maat into a
commercial product, that’s a feature I’d add.) It sounds more limiting than it
actually is: problematic modules tend to remain where they are. The good
thing is that because we lose some of the supporting information, the results
we get are more likely to point to true problems. Consider renaming the
module as a reset switch triggered by refactoring.

Catch Architectural Decay
Temporal coupling has a lot of potential in software development. We can
spot unexpected dependencies and suggest areas for refactoring.

Temporal coupling is also related to software defects. There are multiple rea-
sons for that. For example, a developer may forget to update one of the
(implicitly) coupled modules. Another explanation is that when you have
multiple modules whose evolutionary lifelines are intimately tied, you run
the risk of unexpected feature interactions. You’ll also soon see that temporal
coupling often indicates architectural decay. Given these reasons, it’s not
surprising that a high degree of temporal coupling goes with high defect rates.

Temporal Coupling and Software Defects

Researchers found that different measures of temporal coupling
outperformed traditional complexity metrics when it came to
identifying the most defect-prone modules (see On the Relationship
Between Change Coupling and Software Defects [DLR09]). What’s
surprising is that temporal coupling seems to be particularly good
at spotting more severe bugs (major/high-priority bugs).

The researchers made another interesting finding when they
compared the bug-detection rate of different coupling measures.

• Click HERE to purchase this book now. discuss

Catch Architectural Decay • 11

http://pragprog.com/titles/atcrime
http://forums.pragprog.com/forums/atcrime

Temporal Coupling and Software Defects

Some measures included time awareness, effectively down-priori-
tizing older commits and giving more weight to recent changes.
The results were counterintuitive: the simpler sum of coupling
algorithm that you learned about in this chapter performed better
than the more sophisticated time-based algorithms.

My guess is that the time-based algorithms performed worse
because they’re based on an assumption that isn’t always valid.
They assume code gets better over time by refactorings and focused
improvements. In large systems with multiple developers, those
refactorings may never happen, and the code keeps on accumulat-
ing responsibilities and coupling. Using the techniques in this
chapter, we have a way to detect and avoid that trap. And now we
know how good the techniques are in practice.

Enable Continuing Change
Back in Chapter 6, Calculate Complexity Trends from Your Code’s Shape, on
page ?, we learned about Lehman’s law of increasing complexity. His law
states that we must continuously work to prevent a “deteriorating structure”
of our programs as they evolve. This is vital because every successful software
product will accumulate more features.

Lehman has another law, the law of continuing change, which states a program
that is used “undergoes continual change or becomes progressively less useful”
(see On Understanding Laws, Evolution, and Conservation in the Large-Program
Life Cycle [Leh80]).

There’s tension between these two laws. On one hand, we need to evolve our
systems to make them better and keep them relevant to our users. At the
same time, we don’t want to increase the complexity of the system.

One risk with increased complexity is features interacting unexpectedly. We
make a change to one feature, and an unrelated one breaks. Such bugs are
notoriously hard to track down. Worse, without an extensive regression test
suite, we may not even notice the problem until later, when it’s much more
expensive to fix.

To prevent horrors like that from happening in our system, let’s see how we
can use temporal coupling to track architectural problems and stop them
from spreading in our code.

Chapter 8. Detect Architectural Decay • 12

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/atcrime
http://forums.pragprog.com/forums/atcrime

Identify Architecturally Significant Modules
In the following example, we’re going to analyze a new codebase. Craft.Net2

is a set of Minecraft-related .NET libraries. We’re analyzing this project because
it’s a fairly new and cool project of suitable size with multiple active developers.

To get a local copy of Craft.Net, clone its repository:

prompt> git clone https://github.com/SirCmpwn/Craft.Net.git

Let’s perform the trend analysis step by step so that we can understand what’s
happening. Each step is nearly identical; the time period is the only thing
that changes. We can automate this with a script later. Let’s find the first
module to focus on.

Move into the Craft.Net directory and perform a sum of coupling analysis:

prompt> git log --pretty=format:'[%h] %an %ad %s' --date=short --numstat \
--before=2014-08-08 > craft_evo_complete.log

prompt> maat -l craft_evo_complete.log -c git -a soc
entity,soc
Craft.Net.Server/Craft.Net.Server.csproj,685
Craft.Net.Server/MinecraftServer.cs,635
Craft.Net.Data/Craft.Net.Data.csproj,521
Craft.Net.Server/MinecraftClient.cs,464
...

Notice how we first generate a Git log and then feed that to Code Maat. Sure,
there’s a bit of Git magic here, but nothing you haven’t seen in earlier chapters.
You can always refer back to Chapter 3, Creating an Offender Profile, on page
?, if you need a refresher on the details.

When you look for modules of architecural significance in the results, ignore
the C# project files (.csproj). The first real code module is MinecraftServer.cs. As
you see, that class has the most cases of temporal coupling to other modules.
Looks like a hit.

The name of our code witness, MinecraftServer, is also an indication that we’ve
found the right module; a MinecraftServer sounds like a central architectural
part of any, well, Minecraft server. We want to ensure that the module stays
on track over time. Here’s how we do that.

2. https://github.com/SirCmpwn/Craft.Net

• Click HERE to purchase this book now. discuss

Catch Architectural Decay • 13

https://github.com/SirCmpwn/Craft.Net
http://pragprog.com/titles/atcrime
http://forums.pragprog.com/forums/atcrime

Perform Trend Analyses of Temporal Coupling
To track the architectural evolution of the MinecraftServer, we’re going to perform
a trend analysis. The first step is to identify the periods of time that we want
to compare.

The development history of Craft.Net goes back to 2012. There was a burst
of activity that year. Let’s consider that our first development period.

To perform the coupling analysis, let’s start with a version-control log for the
initial period:

prompt> git log --pretty=format:'[%h] %an %ad %s' --date=short --numstat \
--before=2013-01-01 > craft_evo_130101.log

We now have the evolutionary data in craft_evo_130101.log. We use the file for
coupling analysis, just as we did earlier in this chapter:

prompt> maat -l craft_evo_130101.log -c git -a coupling > craft_coupling_130101.csv

The result is stored in craft_coupling_130101.csv. That’s all we need for our first
analysis period. We’ll look at it in a moment. But to spot trends we need more
sample points.

In this example, we’ll define the second analysis period as the development
activity in 2013 until 2014. Of course, we could use multiple, shorter periods,
but the GitHub activity shows that period contains roughly the same amount
of activity. So for brevity, let’s limit the trend analysis to just two sample
points.

The steps for the second analysis are identical to the first. We just have to
change the filenames and exclude commit activity before 2013. We can do
both in one sweep:

prompt> git log --pretty=format:'[%h] %an %ad %s' --date=short --numstat \
--after=2013-01-01 --before=2014-08-08 > craft_evo_140808.log

prompt> maat -l craft_evo_140808.log -c git -a coupling > craft_coupling_140808.csv

Chapter 8. Detect Architectural Decay • 14

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/atcrime
http://forums.pragprog.com/forums/atcrime

We now have two sampling points at different stages in the development his-
tory. Let’s investigate them.

Investigate the Trends
When we perform an analysis of our codebase, we want to track the evolution
of all interesting modules. To keep this example short, we’ll focus on one main
suspect as identified in the sum of coupling analysis: the MinecraftServer module.
So let’s filter the data to inspect its trend.

I opened the result files, craft_coupling_130101.csv and craft_coupling_140808.csv, in a
spreadsheet application and removed everything but the modules coupled to
MinecraftServer to get the filtered analysis results.

There’s one interesting finding in 2012: the MinecraftServer.cs is coupled to
MinecraftClient.cs. This seems to be a classic case of temporal coupling between
a producer and a consumer of information, just as we discussed in Understand
the Reasons Behind Temporal Dependencies, on page ?. When we notice a
case like that, we want to track it.

Forward to 2014. The coupling between server and client isn’t present a year
and a half later, but we have other problems. As you can see, the MinecraftServer
has accumulated several heavy temporal dependencies compared to its
cleaner start in the initial development period.

When that happens, we want to understand why and look for places to
improve. Let’s see how.

React to Structural Trends
The following figure presents a visual view of the architectural decay we just
spotted. It’s the same enclosure diagrams we used back in Chapter 4, Analyze

• Click HERE to purchase this book now. discuss

React to Structural Trends • 15

http://pragprog.com/titles/atcrime
http://forums.pragprog.com/forums/atcrime

Hotspots in Large-Scale Systems, on page ?, but now they’re illustrating the
modules coupled to MinecraftServer at two different points in time.

The obvious increase in temporal coupling says there are more modules that
have to change with the MinecraftServer in 2014 than earlier in the development
history. Note that the number of coupled modules isn’t a problem in itself.
To classify a temporal coupling, you need to look at the architectural bound-
aries of the coupled modules.

When the coupled modules are located in entirely different parts of the system,
that’s structural decay. Our data in the trend table on page 15 shows one
obvious case in 2014: Craft.Net.Anvil/Level.cs.

That coupling, together with the growing trend, suggests that our MinecraftServer
has been accumulating responsibilities.

Remember how we initially discussed code changes that seem to break
unrelated features? The risk with the trend we see here is that it leaves the
system vulnerable to such unexpected feature interactions.

If allowed to grow, increased temporal coupling leads to fragile systems. As
you saw earlier, temporal coupling has a high correlation with defects. That’s
why we want to integrate the analysis into a team’s workflow. Let’s see how.

Chapter 8. Detect Architectural Decay • 16

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/atcrime
http://forums.pragprog.com/forums/atcrime

Use a Storyboard to Track Evolution
The trend analysis we just performed is reactive. It’s an after-the-fact analysis.
The results are useful because they help us improve, but we can do even
better.

With more activity, you want more sample points. So why not make it a habit
to perform regular analyses on the projects you work on?

If you work iteratively, perform the analyses in each iteration. This approach
has several advantages:

• You spot structural decay immediately.
• You see the structural impact of each feature as you work with it.
• You make your evolving architecture visible to everyone on the team.

I recommend that you visualize the result of each analysis, perhaps as in
Figure , , on page 16, print them all out, and put them on a storyboard for
each iteration.

Think back to our initial example on automated tests with nasty implicit
couplings to a database. With an evolutionary storyboard, we’d spot the decay
as soon as we noticed the pattern—a few iterations at most, and that’s it.

An iterative trend analysis of temporal coupling is a low-tech approach that
helps us improve. It also has the notable advantage of putting focus on the
right parts of the system. As such, an evolutionary storyboard is invaluable
to complement and stimulate design discussions with peers.

If you find as much promise in this approach as I do, check out the article
Animated Visualization of Software History using Evolution Storyboards [BH06].
The authors are the pioneers of the storyboard idea, and their paper shows
some cool animations of growing systems.

Scale to System Architectures
This chapter started with a sum of coupling analysis. With that analysis, we
identified the architecturally significant modules. We also noted that those
modules aren’t necessarily the ones we’d expect from our formal specification
or design.

After that, we saw how a temporal coupling analysis gives us information we
cannot extract from the code alone. It’s information that gives us design
insights and refactoring directions. When used as a refactoring guide, we can
assume that modules that have changed together in the past are likely to

• Click HERE to purchase this book now. discuss

Scale to System Architectures • 17

http://pragprog.com/titles/atcrime
http://forums.pragprog.com/forums/atcrime

continue to change together. We looked at that in our second analysis of
Craft.Net.

You then learned to spot architectural decay by applying trend analyses to
the coupling. Finally, you learned how to track potential decay with an evolu-
tionary storyboard.

With temporal coupling behind us, we’ve completed our initial set of analysis
methods. Before we move on to discuss teams and social dynamics, we’re
going to build on what we’ve learned so far. Until now, we have limited the
analyses to individual files. But now you’ll see how temporal coupling scales
to system architecture, too. That will be exciting!

Chapter 8. Detect Architectural Decay • 18

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/atcrime
http://forums.pragprog.com/forums/atcrime

