Extracted from:

Your Code as a Crime Scene

Use Forensic Techniques to Arrest Defects,
Bottlenecks, and Bad Design in Your Programs

This PDF file contains pages extracted from Your Code as a Crime Scene, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or
PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Dallas, Texas - Raleigh, North Carolina


http://www.pragprog.com

Th
ograimimers

Your Code As a,
Crime Scene

Use Forensic Techniques
to Arrest Defects, Bottlenecks, and
Bad Design in Your Programs
{int J = 05 J € loci Jjee¢) resly) = bufly):

pturn res;

ol

¢ res. e, "t
checkRe 13},

bou;

Working Effectively
with Legacy Code




Your Code as a Crime Scene

Use Forensic Techniques to Arrest Defects,
Bottlenecks, and Bad Design in Your Programs

Adam Tornhill

The Pragmatic Bookshelf

Dallas, Texas - Raleigh, North Carolina



Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Fahmida Y. Rashid (editor)
Potomac Indexing, LLC (indexer)
Cathleen Small (copyeditor)
Dave Thomas (typesetter)

Janet Furlow (producer)

Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-038-7

Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—March 2015


https://pragprog.com
rights@pragprog.com

The central idea of Your Code as a Crime Scene is that we’ll never be able to
understand complex, large-scale systems just by looking at a single snapshot
of the code. As you’ll see, when we limit ourselves to what’s visible in the
code, we miss a lot of valuable information. Instead we need to understand
both how the system came to be and how the people working on it interact
with each other. In this book, you’ll learn to mine that information from the
evolution of your codebase.

Once you've worked through this book, you’ll be able to examine a large system
and immediately get a view of its health—that is, its health from both a
technical perspective and from the development practices that led to the code
you see today. You'll also be able to track the improvements made to the code
and gather objective data on them.

About This Book

There are plenty of good books on software design for programmers. So why
read another one? Well, unlike other books, Your Code as a Crime Scene
focuses on your codebase. This book will help you identify potential problems
in your code, find ways to improve it, and get rid of productivity bottlenecks.

Your Code as a Crime Scene blends forensic psychology and software evolution.
Yes, it is a technical book, but programming isn’t just about lines of code.
We also need to focus on the psychological aspects of software development.

But forensics—isn’t that about finding criminals? It sure is, but you'll also
see that criminal investigators ask many of the same open-ended questions
programmers ask while working through a codebase. By applying forensics
concepts to software development, we gain valuable insights. And in our case,
the offender is problematic code that we need to improve.

As you read along, you’ll:

¢ Predict which sections of code have the most defects and the steepest
learning curves.

e Use software evolution to find the code segment that matters most for
maintenance.

e Understand how multiple developers and teams influence code quality.

e Learn how to track organizational problems in your code and get tips on
how to fix them.

¢ Get a psychological perspective on your programs and learn how to make
them easier to understand.

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/atcrime
http://forums.pragprog.com/forums/atcrime

2

Who Should Read This Book?

This book is written for programmers, software architects, and technical leads.
The techniques in the book are useful for both small and large systems. On
small systems, you'll get new insights into your design and how well the
actual code reflects your ideas. On large projects, you'll learn to find the code
that matters most for your productivity and save maintenance costs, and
you'll learn how to track down organizational problems in your codebase.

It doesn’t matter what language you program in, as long as you are comfortable
with the command prompt. The case studies in the book use Clojure, Java,
and C#, but you don’t need to know any of these languages to be able to follow
along. Our discussions will focus on design principles, which are language-
independent.

We'll also interact a lot with version-control systems. To get the most out of
the book, you should know how to work with Subversion, Git, Mercurial, or
a similar tool.

The strategies you'll learn will be useful regardless of the size of your codebase.
But the more complex your codebase is, the more you’ll need this book.

This book covers both technical and social issues in large-scale projects. If
you're in a leadership position, use the strategies to maintain a high-level
view of your system and development progress.

Optimize for Understanding

Most software development books focus on writing code. After all, that’s what
we programmers do: write code.

I thought that was our main job until I read Facts and Fallacies of Software

maintenance is the most important phase in the software development lifecy-
cle. Somewhere between 40 and 80 percent of a typical project’s total costs
go toward maintenance. What do we get for all this money? Glass estimates
that close to 60 percent of the changes are genuine enhancements, not just
bug fixes.

These enhancements come about because we have a better understanding
of the final product. Users spot areas that can be improved and make feature
requests. Programmers make changes based on the feedback and modify the
code to make it better. Software development is a learning activity, and
maintenance reflects what we've learned about the project thus far.

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/atcrime
http://forums.pragprog.com/forums/atcrime

Optimize for Understanding ® 3

Maintenance is expensive, but it isn’t necessarily a problem. It can be a good
sign, because only successful applications are maintained. The trick is to
make maintenance effective. To do that, we need to know where we spend
our time.

It turns out that understanding the existing product is the dominant mainte-
nance activity (see Facts and Fallacies of Software Engineering [Gla92]). Once

we know what we need to change, the modification itself may well be trivial.
But the road to that enlightenment is often painful.

This means our primary task as programmers isn’'t to write code, but to
understand it. The code we have to understand may have been written by
our younger selves or by someone else. Either way, it's a challenging task.

This is just as important in today’s Agile environments. With Agile, we enter
maintenance mode immediately after the first iteration, because we modify
existing code in later iterations. We spend the rest of the project in the most
expensive phase of the development lifecycle. Let’s ensure that it’s time well-
invested.

Know the Enemy of Change

To stay productive over time, we need to keep our programs’ complexity in
check. The human brain may be the most complex object in the known uni-
verse, but even our brain has limitations. As we program, we run into those
limitations all the time. Our brain was never designed to deal with walls of
conditional logic nested in explicit loops or to easily parse asynchronous
events with implicit dependencies. Yet we face such challenges every day.

We can always write more tests, try to refactor, or even fire up a debugger to
help us understand complex code constructs. As the system scales up,
everything gets harder. Dealing with over-complicated architectures, incon-
sistent solutions, and changes that break seemingly unrelated features can
kill both our productivity and our joy in programming. The code alone doesn’t
tell the whole story of a software system.

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/atcrime
http://forums.pragprog.com/forums/atcrime

*4

(defn- sun-revs-by-author

4 total-revs]
{grouped tota
try cf
(for Ligrovp-ettey (Cauthor group-entry)
N nrows changes)1]

revs (ds.
{author revs total-revs))

(defn- sun-effort-by-author
izt 5] grouped
f {ty-entry change
(for [lentay ey (zentity entity-entry)
total-revs (ds,
‘author-group (ds/-groul
author-revs (sum-revs-t

[entity author-revs]))

- changes)
o ey -author_changes)

by-author author-grovp

(defn as-revisions-per-author
[ds options]
((ds —group-by !:;;try ds)

ffort-by-au

oyt mormmlze ST, hor-revs :total-revsl)

D ataset [zentity :author :autho

((:ss order-by :entity :asc)))

We need all the supporting techniques and strategies we can get. This book
is here to provide that support.

How to Read This Book

This book is meant to be read from start to finish. Later parts build on tech-
niques that I introduce gradually over the course of several chapters. Let's
look at the big picture.

Part | Shows How You Detect Problematic Code

In Part I, you'll learn techniques to identify complex code that you also need
to work with often. No matter how much we enjoy our work, when it comes
to commercial products, time and money always matter. In this part, you'll
learn methods to identify and prioritize the changes to the code that give you
the most value.

We'll build the techniques on forensic methods used to predict and track
down serial offenders. You’'ll see that each crime forms part of a larger pattern.
Similarly, each change we make to our software leaves a trace. Each such
trace is a clue to understanding the system we're building.

These modification patterns let you look beyond the current structure of the
code to find out where it came from and how it evolved. By mining commit
data and analyzing the history of your code, you learn to predict the code’s
future. This will allow you to start the fixes ahead of time.

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/atcrime
http://forums.pragprog.com/forums/atcrime

How to Read This Book ® 5

Part Il Shows How You Can Improve Your Architecture

Once you know how to identify offending code in your system, you’ll want to
look at the bigger picture. You'll want to ensure that the high-level design of
your system supports the evolution of your code.

In this part, we’ll take inspiration from eyewitness testimonies to see how
memory biases can frame both innocent bystanders and code. You'll then
learn techniques to reduce memory biases and see how you can interview
your own codebase. Your reward is information that you cannot deduce from
the code alone.

After you've finished Part II, you'll know how to evaluate your software
architecture against the modifications you make to your code. You’'ll also have
techniques that let you identify signs of structural decay and expensive
duplications of knowledge. In addition, you'll see how they provide you with
refactoring directions and suggest new modular boundaries in your design.

Part Ill Shows How Your Organization Affects Your Code

Today’s large software systems are developed by multiple teams. That inter-
section between people and code is an often overlooked aspect of software
development. When there’s a misalighment between how you're organized
versus the work style your software architecture supports, code quality and
communication suffers. As a result, we wind up with tricky workarounds and
compromises to the design.

>Io

>I. To

In Part III, you’ll learn techniques to identify organizational problems that
show up in your code. You’'ll see how to predict bugs from the way we work,
understand how social biases influence software development, and uncover
the distribution of knowledge among developers. As a bonus, you'll learn
about group decisions, communication, false serial killers, and how they all
relate to software development.

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/atcrime
http://forums.pragprog.com/forums/atcrime

°6

Because we base these techniques on version-control data as well, the
methods are aligned with how you really work, instead of to any formal
organizational chart. As you'll see, those two views often differ.

Toward a New Approach

Over the past decade, there’s been some fascinating research on software
evolution. Like most ideas and studies from academia, these findings have
not crossed over into the industry. This book bridges that gap by translating
academic research into examples for the practicing programmer.

You may be wondering how the strategies we cover in this book will relate to
other software development practices. Let’s sort that out so that you know
how your new skills will complement your existing ones.

e Tests: The techniques you are about to learn let you identify the parts of
your code most likely to contain defects. But they won’t find the errors
themselves. You still need to be testing the code. If you invest in automated
tests, this book will give you tools to monitor the quality and evolution of
those tests.

e Static analysis: Static analysis is a powerful technique for finding errors
and dangerous coding constructs. Static analysis focuses on the impact
your code has on the machine. In this book, we’ll focus on how we humans
look at the meaning of our code. Your code has to serve both audi-
ences—machines and humans—so the techniques in this book complement
static analysis rather than replace it.

e Complexity metrics: Complexity metrics have been around since the 1970s,
but they're pretty bad at, well, spotting complexity. Metrics are language-
specific, which means we cannot analyze a polyglot codebase. Another
limitation of metrics is that they erase social information about how the
code was developed. Instead of erasing that information, we’ll learn to
derive value from it. We’ll complement metrics with more data.

e Code reviews: A manual process that is expensive to replicate, code reviews
still have their place in software development. Done right, they're useful
for both bug-hunting and knowledge-sharing. The techniques you’ll learn
in this book will help you prioritize the code you need to review.

As you see, the techniques you’ll learn complement existing practices, rather
than replacing them. I often use these techniques to identify parts of the code
in need of manual inspection and review—or, as you’ll see soon, to communi-
cate with testers and other developers about the codebase.

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/atcrime
http://forums.pragprog.com/forums/atcrime

L

Toward a New Approach ¢ 7

Software Development is More Than a Technical Problem
In a surprisingly short time, we've moved from lighting fires in our
caves to reasoning about multicores and CPU caches in cubicles.
Yet we handle modern technology with the same biological tools
as our prehistoric ancestors used for basic survival. That’s why
taming complexity in software has to start with how we think.
Programming needs to be aligned with the way our brain works.

In this book, we’ll take several opportunities to move beyond pure
technical material. You’'ll learn why beauty is a fundamental
quality of all good code, how individuals can bias group decisions,
and how coding to music affects your problem-solving abilities.

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/atcrime
http://forums.pragprog.com/forums/atcrime



