
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Spot Nested Logic That Taxes Working Memory
In Explore the Complexity Dimension, on page ? you saw that the most
popular code-level metrics are poor at capturing accidental complexity. The
main reason is that cyclomatic complexity doesn’t reveal much about the
relative effort required to understand a piece of code. The metric cannot dif-
ferentiate between code with repeatable patterns that are straightforward to
reason about vs. truly messy implementations requiring cognitive effort to
understand. Let’s look at the next figure to see how misleading cyclomatic
complexity can be.

Instead, when on the hunt for complexity, consider the shape of the code, as
you learned in Calculate Complexity Trends from Your Code’s Shape, on page
?. Code with deep, nested logic heavily taxes your working memory.

To experience the problem, look at case B in the preceding figure and pretend
you need to change the saveProperties() call. When making this change, all pre-
ceding if statements represent the program state you need to keep in your
head. There are four branches in the code, meaning you’re operating at the
edge of your cognitive capacity while reasoning about this code, and you still
need to find some mental room for the logic of the actual change. It’s no
wonder that things go wrong in nested code.

The cognitive costs of nested logic were confirmed in a comprehensive survey
of software engineers at seven leading Swedish companies (such as Volvo,
Ericsson, Axis). This survey reveals that nesting depth and a general lack of
structure are the two issues that introduce the most perceived complexity
when reading code, significantly more than the number of conditionals by

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/atcrime2
http://forums.pragprog.com/forums/atcrime2

itself. (See A Pragmatic View on Code Complexity Management [ASS19] for the
full treatment.)

Fortunately, nested logic is straightforward to refactor by encapsulating each
nested block within a well-named function, as shown in the next figure.

Stay Clear of Bumpy Roads
Nested logic might be problematic, but, as always, there are different levels
in complexity hell. A more serious issue is the bumpy road code smell, nested
logic’s sinister cousin.

The bumpy road smell is a function with multiple chunks of nested conditional
logic. Just like a bumpy road slows down your driving speed and comfort, a
bumpy road in code presents an obstacle to comprehension. Worse, in
imperative languages, there’s also the increased risk of feature entanglement,
leading to complex state management with bugs in its wake.

Bumpy roads are prevalent in code (it’s what you get if you cut down on
maintenance), and you’ll find the issue in many hotspots independent of
programming language. An illustrative example is the JavaScript function
commitMutationEffectsOnFiber in React’s ReactFiberCommitWork.old.js hotspot.5 The next
figure shows a small slice of the code.

5. https://tinyurl.com/react-fiber-code2202

• 4

• Click HERE to purchase this book now. discuss

https://tinyurl.com/react-fiber-code2202
http://pragprog.com/titles/atcrime2
http://forums.pragprog.com/forums/atcrime2

When inspecting bumpy roads, there’s a set of heuristics for classifying the
severity of the code smell:

• The deeper the nested logic in each bump, the higher the tax on working
memory.

• The more bumps, the more expensive it is to refactor since each bump
represents a missing abstraction.

• The larger the bumps—that is, the more lines of code they span—the
harder it is to build up a mental model of the function.

Fundamentally, a bumpy code road represents a lack of encapsulation. Each
bump tends to represent a responsibility or action. Hence, the initial remedi-
ation is the same as for deep nested logic: extract functions corresponding
to the identified responsibilities to even out the road.

Before we continue our tour of code smells, let’s take a step back and discuss
method extraction. It’s such a critical refactoring in laying the foundation for
better designs to come.

Refactor Complex Code via Simple Steps
The code smells seen so far all stem from overly long classes and functions.
Take ReactFiberCommitWork as a prominent example: its three central functions
span 200 to 400 lines of code each. This raises the question: should we prefer
many small methods—the logical outcome of the recommended refactor-
ings—or is it better to keep related code in one large chunk?

• Click HERE to purchase this book now. discuss

Refactor Complex Code via Simple Steps • 5

http://pragprog.com/titles/atcrime2
http://forums.pragprog.com/forums/atcrime2

The main advantage of modularizing a piece of code isn’t that we get shorter
functions. Rather, it’s about transforming the context, as discussed in design
to isolate change on page ?. By extracting cohesive, well-named functions,
we introduce chunks into our design, as shown in the following figure. These
chunks let us reason more effectively about the problem we’re trying to solve,
often suggesting more radical refactoring in the process.

The preceding figure shows how introducing chunks in a complex hotspot
reveals the overall intent of the code. The original implementation is high in
complexity, with deep, nested logic paving an uncomfortably bumpy road.
The mere act of extracting relevant methods delivers multiple benefits:

• Isolate change—The entanglement of the original code is like an open
invitation to bugs and coding mistakes; we change one behavior, only to
discover that we broke another seemingly unrelated feature. Modularizing
the code serves to protect different features from each other. As a bonus,
increased modularity clarifies the data dependencies.

• Guide code reading—Cohesive functions guide code reading since there’s
one obvious place to go for details on how a specific business rule is
realized.

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/atcrime2
http://forums.pragprog.com/forums/atcrime2

• Reveal intent—Extracting functions brings out the overall algorithm, which
in turn suggests the deeper design changes that make the real difference.
In the preceding example, the code starts to look like a match for the com-
mand pattern (See Design Patterns: Elements of Reusable Object-Oriented
Software [GHJV95].) Replacing each case statement with an object would
increase the cohesion and make the bulk of the function go away. There’s
nothing sweeter than deleting accidental complexity.

These refactoring steps and benefits can come across as overly simplistic at
first. It’s like we expect complex problems to always require complicated
solutions. Yet, the simplicity of a refactoring like the Extract Method is
deceiving since modeling the right behaviors and chunks is far from trivial.
Refactoring requires domain expertise for finding the right abstractions and
properly naming them.

Recognize Bad Names
Back in Understand That Typing Isn’t the Bottleneck in Programming, on
page ?, you learned that we spend most of our time trying to understand
existing code. How we name our chunks of code is vital in that program
comprehension process. As research shows, we try to infer the purpose of
unfamiliar code by building up mental representations largely driven by
reading the names of classes or functions. (See Software Design: Cognitive
Aspects [DB13] for the empirical findings.)

This implies that a good name is descriptive and expresses intent. A good
name also suggests a cohesive concept; remember, fewer responsibilities
means fewer reasons to change. Bad names, on the other hand, are recognized
by the following characteristics:

• Bad names carry little information and convey no hints to the purpose of
the module, for example, StateManager (isn’t state management what pro-
gramming is about?) and Helper (a helper for what and whom?).

• A bad name is built with conjunctions, such as and, or, and so on. These are
sure signs of low cohesion. Examples include ConnectionAndSessionPool (do con-
nections and sessions express the same concept?) and FrameAndToolbarController
(do the same rules really apply to both frames and toolbars?).

Bad names attract suffixes like lemonade draws wasps on a hot summer day.
The immediate suspects are everything that ends with Manager, Util, or the
dreaded Impl. Modules baptized like that are typically placeholders, but they
end up housing core logic elements over time. You know they will hurt once
you look inside.

• Click HERE to purchase this book now. discuss

Refactor Complex Code via Simple Steps • 7

http://pragprog.com/titles/atcrime2
http://forums.pragprog.com/forums/atcrime2

Naming Object-Oriented Inheritance Hierarchies

Good interfaces express intent and suggest usage. Their implemen-
tations specify both what’s specific and what’s different about the
concrete instances. Say we create an intention-revealing interface:
ChatConnection. (Yes, I did it—I dropped the cognitive distractor, the
I prefix.) Let each implementation of this interface specify what
makes it unique: SynchronousTcpChatConnection, AsynchronousTcpChatCon-
nection, and so on.

Optimize for Your Brain, Not a Metric
Code smells, like large functions, complex logic, fuzzy names, and bumpy
roads, are mere symptoms of an underlying problem: lack of encapsulation.
Refactoring complex code is very much an iterative process. Start simple and
reduce error-prone constructs step-by-step to align the code with how your
brain prefers it. And remember that modularization is a start, not the end.

Never base the decision to split a method on length but on behavior and
meaningful abstractions. Splitting functions based on thresholds alone makes
the code worse, not better; code that belongs together should stay together.
Always.

That said, a general heuristic like “max 30 lines of code per function,” as
recommended by David Farley in Modern Software Engineering [Far22], still
serves well as an alert system: the longer the method, the more likely it’s
lacking in abstraction. Just remember to treat the limit as the heuristic it is,
and optimize for your brain, not a measure.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/atcrime2
http://forums.pragprog.com/forums/atcrime2

