
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Fight Unplanned Work, the Silent Killer of Projects
Visualizing the health of your codebase offers an actionable starting point
and a potential trigger for paying down technical debt. However, any organi-
zation looking to improve its delivery efficiency has to take a broader perspec-
tive. In addition to the technical improvements, you also need to reshape the
engineering and collaborative strategies to ensure no new bottlenecks are
introduced.

All of these changes are investments that take time, meaning we need to bring
visibility to the outcome to ensure improvements have a real effect. Measuring
trends in unplanned work offers a simple solution by complementing the
code-level metrics with a higher-level perspective.

Unplanned work is anything you didn’t anticipate or plan for, such as bug
fixes, service interruptions, or flawed software designs causing excess rework.
By its very nature, unplanned work leads to stress and unpredictability,
transforming a company into a reactive instead of a proactive entity. In fact,
in The Phoenix Project: A Novel about IT, DevOps, and Helping Your Business
Win [KBS18]—a wonderful and highly recommended read—Gene Kim describes
unplanned work as being “the silent killer of IT companies.” Let’s see how to
use the concept for communicating expectations and future improvements.

Adding More People Cannot Compensate for Waste

When a company accumulates technical debt, the business
increasingly experiences symptoms, commonly in the form of Jira
tickets moving at a depressingly slow rate. The gut response is a
cry for more developers, more testers, more of everything. Yet losing
predictability is a sure sign that more people isn’t the solution. In
See That a Man-Month Is Still Mythical, on page ?, you will learn
how adding more people will probably exacerbate the situation.

Open Up the IT Blackbox by Measuring Unplanned Work
Most organizations track unplanned work indirectly via product life-cycle
management tools like Jira, Azure DevOps, or Trello. This makes it possible
to calculate the ratio of planned vs. unplanned work over time. You just need
to agree on which issue types represent unplanned work.

The figure on page 5 shows an example from a real-world project in crisis.
Looking at the trend, you see that the nature of the delivered work has shifted
over time, and the organization now spends 60 percent of its capacity on

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/atcrime2
http://forums.pragprog.com/forums/atcrime2

reactive, unplanned work. There’s also an overall decline in throughput,
meaning less work gets completed than earlier in the year.

Focusing the presentation on trends makes the waste obvious: no organization
wants to do worse today than it did yesterday. Let’s put the amount of
unplanned work into context by quantifying the waste.

Calculate the Untapped Capacity Tied Up in Technical Debt
We can never eliminate unplanned work, but we still need a reliable target
for putting our numbers into context. A good baseline for unplanned work is
15 percent, which is what high-performing organizations achieve in terms of
bug fixes. (See Accelerate: The Science of Lean Software and DevOps: Building
and Scaling High Performing Technology Organizations [FHK18].) With the 15
percent baseline indicating the acceptable amount of unplanned work, we
can now sketch out the following formula:

Waste (%) = UnplannedWork% – 0.15
UntappedCapacity ($) = Ndevelopers * AverageSalary * Waste

Let’s run the formula using the data from the unplanned work trend for the
project in crisis in the figure as an example. The figure shows that they spent
roughly 60 percent on unplanned work during the last month. Assuming an
average European software developer salary, we can estimate the untapped
potential by filling in the numbers in our formula:

// Assuming an average salary of 5.000 Euros/month.
// With payroll tax and benefits, the employer pays ~7,500 Euros.
// Now, the project had 35 developers.
Waste (%) = 0.60 – 0.15 = 45%
UntappedCapacity: 35 * 7,500 * 0.45 = 118,125€ / month

This exercise reveals the potential when unplanned work is minimized: it
would mean the equivalent of 15(!) additional full-time developers. These are
not new hires; by reducing the amount of unplanned work, you free up
developers to focus on actual planned work, which moves your product for-
ward. The added bonus is that those 15 developers come with no extra coor-
dination cost since they are already in the company. How good is that? It’s
hard to argue with the promise, particularly when it’s your data.

Use Quality to Go Fast
Getting more done without hiring more people is a clear competitive advantage.
Yet, too many companies in the industry seem to share a commonly held belief
that high-quality code is expensive. You detect this mindset each time you hear
a “no” as a response to a suggested technical improvement: we might not “have

• 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/atcrime2
http://forums.pragprog.com/forums/atcrime2

time” for refactoring, test automation, architectural redesigns, and so forth—
you know, the usual suspects. It’s like there is a supposed tradeoff between
speed and quality, where choosing one negatively influences the other.

However, as indicated by the data you met in this chapter, there doesn’t seem
to be such a tradeoff. In fact, the contrary seems to be true: we need quality
to go fast. Use that to your advantage.

Differentiate Remediation Time from Interest Payments
The software industry has seen previous attempts at quantifying technical
debt, often by (mis-) using metrics such as the Software Maintainability Index
[WS01] or SQALE [LC09]. While these methods might be valuable to assess
the source code itself, they lack the relevance dimension and connection to
the actual business impact. Remember, the cost of technical debt is never
the time needed to fix the code—the remediation work—but rather the contin-
uous additional development work due to technical issues.

Measuring trends in unplanned work lets you quantify this, and combining
those trends with code-health visualizations allows you to break down the
impact to individual modules to make the data actionable.

Finally, when discussing metrics and outcomes, we also need to touch on the
DevOps Research & Assessment (DORA), which established the Four Key
Metrics (FKM): change lead time, deployment frequency, mean time to restore,

• Click HERE to purchase this book now. discuss

Differentiate Remediation Time from Interest Payments • 5

http://pragprog.com/titles/atcrime2
http://forums.pragprog.com/forums/atcrime2

and change fail percentage.4 In their research, the DORA team showed that
these metrics are solid leading indicators for how the organization as a whole
is doing.

The DORA metrics work well with this chapter’s techniques. As you see in the
figure on page 7, FKM focuses on the delivery side, while this book focuses
on the earlier steps in the software development cycle: the waste introduced
when the code is written. At the end of the day, you need both. It’s hard to
go fast if you don’t go well.

These days, efficient software development is a competitive advantage, enabling
companies to maintain a short time-to-market with a mature product experi-
ence. Armed with a new vocabulary grounded in research, you can now assess
the current waste and—most importantly—know how to communicate it to
the business. From here, you’re ready to expand the concepts from this first
part of the book to the level of software architecture. In Part II, you’ll see how
the crime-scene techniques scale to the system level. But first, try the following
exercises to apply what you’ve learned in this chapter.

4. https://www.devops-research.com/research.html

• 6

• Click HERE to purchase this book now. discuss

https://www.devops-research.com/research.html
http://pragprog.com/titles/atcrime2
http://forums.pragprog.com/forums/atcrime2

• Click HERE to purchase this book now. discuss

Differentiate Remediation Time from Interest Payments • 7

http://pragprog.com/titles/atcrime2
http://forums.pragprog.com/forums/atcrime2

