
Extracted from:

Software Design X-Rays
Fix Technical Debt with Behavioral Code Analysis

This PDF file contains pages extracted from Software Design X-Rays, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2018 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Software Design X-Rays
Fix Technical Debt with Behavioral Code Analysis

Adam Tornhill

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Brian MacDonald
Supervising Editor: Jacquelyn Carter
Development Editor: Adaobi Obi Tulton
Copy Editor: Candace Cunningham
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2018 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-272-5
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—March 2018

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Use Your Perception
A century ago the movement of Gestalt psychology formed theories on how
we make sense of all chaotic input from our sensory systems.4 The proximity
principle is a Gestalt theory that specifies that objects or shapes that are close
to each other appear to form groups. This is why our brains sometimes per-
ceive multiple, distinct parts as a whole, as the following figure illustrates.

If we translate the proximity principle to software, it means we should favor
a structure that guides our code-reading brain toward interpreting related
parts of the source file as a group. Let’s look at a specific example by consid-
ering the information carried by the changes we make to our code, shown in
the figure on page 6.

In the this figure, both case A and B show three hypothetical changes that
form a single commit. However, there’s a different effort behind them although
the same amount of code gets changed. Remember that as developers we
spend most of our time trying to understand existing code. With the proximity
principle in mind, case A exhibits a change pattern that suggests a group of
related functionality. This is in contrast to case B, where the parts that make
up a concept are distributed, which means we initially—and falsely—perceive
these as unrelated functions.

Now, let’s return to the code duplication we identified in Entity Framework
Core, where we found the methods String_EndsWith_MethodCall and String_StartsWith_
MethodCall change together. If you look at the whole file you see that there are 50
lines of code between these two methods. More important, there are three other
methods modeling different behavior interspersed between them. We improve
this code, as the figure on page 7 illustrates, by moving methods that belong
together close to each other.

4. https://en.wikipedia.org/wiki/Gestalt_psychology

• Click HERE to purchase this book now. discuss

https://en.wikipedia.org/wiki/Gestalt_psychology
http://pragprog.com/titles/atevol
http://forums.pragprog.com/forums/atevol

The proximity principle is a much-underused refactoring technique that uses
feedback from how our code evolves. By ordering our functions and methods
according to our change patterns we communicate information that isn’t
expressible in programming-language syntax. That information serves as a
powerful guide to both the programmer and, more important, the code reader
on which parts belong together and how we expect the code to grow.

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/atevol
http://forums.pragprog.com/forums/atevol

• Click HERE to purchase this book now. discuss

• 7

http://pragprog.com/titles/atevol
http://forums.pragprog.com/forums/atevol

