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Use Your Perception
A century ago the movement of Gestalt psychology formed theories on how
we make sense of all chaotic input from our sensory systems.4 The proximity
principle is a Gestalt theory that specifies that objects or shapes that are close
to each other appear to form groups. This is why our brains sometimes per-
ceive multiple, distinct parts as a whole, as the following figure illustrates.

If we translate the proximity principle to software, it means we should favor
a structure that guides our code-reading brain toward interpreting related
parts of the source file as a group. Let’s look at a specific example by consid-
ering the information carried by the changes we make to our code, shown in
the figure on page 6.

In the this figure, both case A and B show three hypothetical changes that
form a single commit. However, there’s a different effort behind them although
the same amount of code gets changed. Remember that as developers we
spend most of our time trying to understand existing code. With the proximity
principle in mind, case A exhibits a change pattern that suggests a group of
related functionality. This is in contrast to case B, where the parts that make
up a concept are distributed, which means we initially—and falsely—perceive
these as unrelated functions.

Now, let’s return to the code duplication we identified in Entity Framework
Core, where we found the methods String_EndsWith_MethodCall and String_StartsWith_
MethodCall change together. If you look at the whole file you see that there are 50
lines of code between these two methods. More important, there are three other
methods modeling different behavior interspersed between them. We improve
this code, as the figure on page 7 illustrates, by moving methods that belong
together close to each other.

4. https://en.wikipedia.org/wiki/Gestalt_psychology
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The proximity principle is a much-underused refactoring technique that uses
feedback from how our code evolves. By ordering our functions and methods
according to our change patterns we communicate information that isn’t
expressible in programming-language syntax. That information serves as a
powerful guide to both the programmer and, more important, the code reader
on which parts belong together and how we expect the code to grow.
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