
Extracted from:

Software Design X-Rays
Fix Technical Debt with Behavioral Code Analysis

This PDF file contains pages extracted from Software Design X-Rays, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2018 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Software Design X-Rays
Fix Technical Debt with Behavioral Code Analysis

Adam Tornhill

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Brian MacDonald
Supervising Editor: Jacquelyn Carter
Development Editor: Adaobi Obi Tulton
Copy Editor: Candace Cunningham
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2018 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-272-5
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—March 2018

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Build Temporary Tests as a Safety Net
Before you apply a splinter refactoring you have to ensure that you won’t
break the behavior of the code. Unfortunately, most hotspots lack adequate
test coverage and writing unit tests for a hotspot is often impossible until
we’ve refactored the code. Let’s look at an example from the Android codebase
that we discussed earlier.

As you see in the figure on page 6, there’s a big difference in the amount of
application code in Android’s core package versus the amount of test code in
the test package.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/atevol
http://forums.pragprog.com/forums/atevol

That figure should put fear into any programmer planning a refactoring,
because the unit test for the main hotspot, ActivityManagerService.java, with 20,000
lines of code, is a meager 33 (!) lines of test code. It’s clear that this test won’t
help us refactor the code.

In situations like this you need to build a safety net based on end-to-end tests.
End-to-end tests focus on capturing user scenarios and are performed on the
system level. That is, you run with a real database, network connections, UI,
and all other components of your system. End-to-end tests give you a fairly
high test coverage that serves as a regression suite, and that test suite is the
enabler that lets you perform the initial refactoring without breaking any
fundamental behavior.

The type of end-to-end tests you need depends upon the API of your hotspot.
If your hotspot exposes a REST API—or any other network-based interface—it’s
straightforward to cover it with tests because such APIs decouple your test
code from the application. A UI, like a web page or a native desktop GUI,
presents more challenges as it makes end-to-end tests much harder to auto-
mate. Our cure in that situation comes with inconvenient side effects but,
just like any medicine, if you need it you really need it. So let’s look at a way
to get inherently untestable code under test.

Introduce Provisional End-to-End Tests
The trick is to treat the code as a black box and just focus on its visible
behavior. For web applications, tools like Selenium let you record existing

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/atevol
http://forums.pragprog.com/forums/atevol

interactions and play them back to ensure the end-user behavior is unaffect-
ed.8 This gives you a way to record the main scenarios that involve your
hotspot from a user’s point of view. Tools like Sikuli let you use the same
strategy to cover desktop UI applications with tests.9

The test strategy is based on tools that capture screen shots and use image
recognition to interact with UI components. The resulting tests are brittle—a
minor change to the style or layout of the UI breaks the regression suite—and
expensive to maintain. That’s why it’s important to remember the context:
your goal is to build a safety net that lets you refactor a central part of the
system. Refactoring, by its very nature, preserves existing behavior since it
makes for a safer and more controlled process.

Thus, we need to consider our UI-based safety net as a temporary creation
that we dispose of once we’ve reached our intermediate goal. You emphasize
that by giving the temporary test suite a provocative name, as we discussed
in Signal Incompleteness with Names, on page ?.

Finally, measure the code coverage of your test suite and look for uncovered
execution paths with high complexity.10 You use that coverage information
as feedback on the completeness of your tests and record additional tests to
cover missing execution paths. You could also make a mental note to extract
that behavior into its own splinter module.

Maintainable Tests Don’t Depend on Details

Maintainable end-to-end tests don’t depend on the details of the
rendered UI. Instead they query the DOM based on known element
identities or, in the case of desktop applications, the identity of a
specific component.

Reduce Debt by Deleting Cost Sinks
It’s a depressingly common case to find hotspots with inadequate test coverage.
That doesn’t mean there aren’t any tests at all, just that there aren’t any tests
where we would need them to be. Surprisingly often, organizations have unit-
test suites that don’t grow together with the application code, yet add to the
maintenance costs. Let’s look at the warning signs in the figure on page 8.

As you see in the figure, the ratio between the amount of source code versus
test code is unbalanced. The second warning sign is that the complexity trends

8. http://www.seleniumhq.org/
9. http://www.sikuli.org/
10. https://en.wikipedia.org/wiki/Code_coverage

• Click HERE to purchase this book now. discuss

Build Temporary Tests as a Safety Net • 7

http://www.seleniumhq.org/
http://www.sikuli.org/
https://en.wikipedia.org/wiki/Code_coverage
http://pragprog.com/titles/atevol
http://forums.pragprog.com/forums/atevol

show different patterns for the hotspot and its corresponding unit test. This is
a sign that the test code isn’t doing its job by growing together with the applica-
tion code, and a quick code inspection is likely to confirm those suspicions.

This situation happens when a dedicated developer attempts to introduce
unit tests but fails to get the rest of the organization to embrace the technique.
Soon you have a test suite that isn’t updated beyond the initial tests, yet
needs to be tweaked in order to compile so that the automated build passes.

You won’t get any value out of such unit tests, but you still have to spend
time just to make them build. A simple cost-saving measure is to delete such
unit tests, as they do more harm than good.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/atevol
http://forums.pragprog.com/forums/atevol

