
Extracted from:

Software Design X-Rays
Fix Technical Debt with Behavioral Code Analysis

This PDF file contains pages extracted from Software Design X-Rays, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2018 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Software Design X-Rays
Fix Technical Debt with Behavioral Code Analysis

Adam Tornhill

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Brian MacDonald
Supervising Editor: Jacquelyn Carter
Development Editor: Adaobi Obi Tulton
Copy Editor: Candace Cunningham
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2018 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-272-5
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—March 2018

https://pragprog.com
support@pragprog.com
rights@pragprog.com

The Dirty Secret of Copy-Paste
While visualizations are important to get the overall picture, the numbers
from an X-Ray analysis often provide more details that help uncover design
issues. The next figure shows the detailed results from the X-Rays of Link-
TagHelperTest.cs and ScriptTagHelperTest.cs.

The table in the preceding figure presents an interesting finding. We see that
several methods have a high degree of code similarity. That is, the implemen-
tation of several methods is very similar, which is an indication of copied-
and-pasted code. For example, the highlighted row shows that there’s a code
similarity of 98 percent between two methods in different files. The figure on
page 6 shows part of the code, and you see that there’s a shared test
abstraction wanting to get out.

Since these methods are changed together in almost half the commits that
touch those files, this is copy-paste that actually matters for your productiv-
ity. Let me clarify by revealing a dirty secret about copy-paste.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/atevol
http://forums.pragprog.com/forums/atevol

Clone Detection 101

Copy-paste detectors are underused in our industry despite the
obvious risks and costs associated with software clones. The pio-
neering work in this field was done by Brenda Baker in her seminal
paper On Finding Duplication and Near-Duplication in Large
Software Systems [Bak95]. There are several clone-detection
algorithms to chose from, all with different trade-offs. The simplest
algorithms look for common text patterns in the code. More elab-
orate clone detectors compare the abstract syntax trees to detect
structural similarities and yield better precision.5

These algorithms are implemented by several open and commercial
clone detectors. For example, I use Clone Digger for Java and
Python,6 and Simian for .NET code.7 It’s also an interesting learning
experience to implement a simple clone detector yourself. The
Rabin–Karp algorithm is a good starting point (see Efficient
randomized pattern-matching algorithms [KR87]).

In the previous chapter we saw that low-quality code isn’t necessarily a
problem. Now we’ll challenge another wide-spread belief by asserting that
copy-paste code isn’t always bad.

5. https://en.wikipedia.org/wiki/Abstract_syntax_tree
6. http://clonedigger.sourceforge.net/
7. http://www.harukizaemon.com/simian/

• 6

• Click HERE to purchase this book now. discuss

https://en.wikipedia.org/wiki/Abstract_syntax_tree
http://clonedigger.sourceforge.net/
http://www.harukizaemon.com/simian/
http://pragprog.com/titles/atevol
http://forums.pragprog.com/forums/atevol

Like everything else, the relative merits of a coding strategy depend on context.
Copy-paste isn’t a problem in itself; copying and pasting may well be the right
thing to do if the two chunks of code evolve in different directions. If they
don’t—that is, if we keep making the same changes to different parts of the
program—that’s when we get a problem.

This is important since research on the topic estimates that in your typical
codebase, 5–20 percent of all code is duplicated to some degree. (See On
Finding Duplication and Near-Duplication in Large Software Systems [Bak95]
and Experiment on the Automatic Detection of Function Clones in a Software
System Using Metrics [MLM96] for studies of commercial software systems.)
That’s a lot of code. We can’t inspect and improve all of it, nor should we.
Just as with hotspots, we need to prioritize the software clones we want to
get rid of. The change coupling analysis combined with a code-similarity
metric is a simple and reliable way to identify the software clones that really
matter for your productivity and code quality. Again, note that this is infor-
mation you cannot get from the code alone; we need a temporal perspective
to prioritize the severity of software clones.

Once we’ve identified the software clones that matter, we want to refactor
them. We typically approach that refactoring by extracting the repeated pattern
into a new method and parameterizing it with the concept that varies. This
makes the code a little bit cheaper to maintain as our temporal dependency
disappears. We also get less code, and that’s good because all code carries a
cost. It’s a liability.8 The more code we can remove while still getting the job
done, the better. Killing software clones is a good starting point here.

8. https://blogs.msdn.microsoft.com/elee/2009/03/11/source-code-is-a-liability-not-an-asset/

• Click HERE to purchase this book now. discuss

The Dirty Secret of Copy-Paste • 7

https://blogs.msdn.microsoft.com/elee/2009/03/11/source-code-is-a-liability-not-an-asset/
http://pragprog.com/titles/atevol
http://forums.pragprog.com/forums/atevol

