
Extracted from:

Program Management for
Open Source Projects

How to Guide Your Community-Driven,
Open Source Project

This PDF file contains pages extracted from Program Management for Open Source
Projects, published by the Pragmatic Bookshelf. For more information or to pur-

chase a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2022 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Program Management for
Open Source Projects

How to Guide Your Community-Driven,
Open Source Project

Ben Cotton

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Michael Swaine
Copy Editor: Corina Lebegioara
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2022 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-924-3
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—July 2022

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Triage Bugs
Problem: Nobody is sure which bugs are the important ones. And the problem
gets complicated by the presence of duplicate and invalid reports.

You have to do something with a bug once it is opened. To do something with
it, you have to make some decisions. How important is it? How easy is the
fix? Who has the time and skills to work on it?

In medicine, triage is the practice of grouping patients based on the extent
of their injuries and their likely mortality. People with minor injuries can wait.
People who are almost certain to die aren’t treated so that time and resources
are focused on those who are critically wounded but could survive. Similarly
(except far less emotionally and ethically fraught), bugs that are of trivial
impact (for example, a tyop (sic) in a book that doesn’t affect the meaning)
can wait. A bug that is impossible to fix without shutting everything else
down for six months while you rewrite the entire project in a new language
won’t get much effort. So bug triage involves assessing the impact field
described in the previous section in order to set the priority. But there’s more
to it than that.

Start the process by assessing some basic information: is this actually a bug?
Is it a duplicate of an existing report? From there, you can start collecting
the information that will allow you to make decisions on priority.

Answer Questions
Problem: The bug tracker is full of invalid reports and duplicates. You’re losing
security bugs in the pile.

When triaging bugs, you’re asking yourself a few questions. How you handle
the bug report depends on the answers.

• Is this a bug? Not all issues in your bug tracker are bug reports. Users
or other contributors will often file feature requests in the bug tracker as
well. This is acceptable—even desirable—in most cases, but you’ll still
want to make sure you set the category appropriately. While you may
accept bug fixes in passing, you may want to limit new features submis-
sions to “trusted” developers or at least require additional planning work
to discourage hasty contributions. If it’s neither a bug nor a feature
request, it might be a question or a support request. Mark it as such or—if
your project uses a separate tool—direct the reporter to the right venue.
Keep in mind that questions and support requests often highlight docu-
mentation bugs, so open a bug against your docs if that seems appropriate.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/bcosp
http://forums.pragprog.com/forums/bcosp

Lastly, the report may be an unactionable rant or unrelated spam. You
can close those without feeling bad.

• Is it a duplicate? If you’re getting a feeling of déjà vu, the bug report may
be a duplicate. Ideally, the reporter checked for existing issues that match
theirs before submitting a new report. People don’t always do that. But
even if they did, they may have just missed it. If you spend a lot of time
in the bug tracker, you can recognize duplicates when they come in and
mark them as such. You’ll probably miss some (see the sidebar at the
end of this list) and that’s okay. The more duplicates you catch, the more
developer time you’ll save.

• Is it a security bug? One of the foundational tenets of the free software
movement is that users should control their computing. Security flaws
violate that by giving someone else control of the computer in some way.
These things happen, but you’ll want to make sure you clearly mark them
so that someone can fix them quickly. You want security bugs to stand
out to developers.

• Is it filed in the right place? Users don’t always know where the problem
lies; they know how they experience it. The larger and more complex your
project is, the more likely it is that the bug report will be misfiled initially.
A Fedora kernel maintainer once told me that the kernel component seems
to be the starting point for any bugs that happen during the boot process
because there are so many moving parts and it’s hard for most people to
tell where the actual failure happens. The bug might not even be in your
software to begin with—it could be in an upstream project. In that case,
you might close your report and direct the user upstream or act as a bug
concierge and file the report for them. Regardless, part of bug triage is to
attempt to get the report into the right place using your deeper knowledge
of the project. Of course, the bug report may still get passed around a few
times before it gets fixed.

• Is it reproducible? You don’t necessarily need to reproduce every bug
yourself, but you should make sure that the report contains the informa-
tion needed to reproduce it. If it doesn’t, ask the reporter to provide what’s
missing. After a few weeks pass with no reply, you can choose to close
the bug.

How Many Duplicates Do You Have?

Bear in mind that the number of bug reports marked as duplicate isn’t the same
concept as the number of duplicate bug reports. In theory, a project with a small

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/bcosp
http://forums.pragprog.com/forums/bcosp

number of bugs will have relatively few duplicates because it’s very easy to check
before filing a new report. As the number of bugs increases, you may expect the
number of duplicates to increase proportionally, especially as you get into very large
numbers because it becomes more difficult to find duplicates.

When I looked at the duplicate percentages for Fedora Linux bug reports,a I saw a
different picture. Once a component had enough bugs to rise out of the “noise,” the
percentage of duplicate bugs held fairly steady, as expected. But the components
with the most bugs saw a decrease in the duplicate percentage.

The challenge users face when trying to find existing bug reports also applies to project
contributors. When a project has several thousand bug reports, it’s unlikely that anyone
can look at a new report and say “ah yes, this is probably a duplicate of bug 12345.”
So don’t worry about missing some duplicates. But be wary of making decisions based
on reports marked duplicate when you’re actually thinking of duplicate bugs.

a. https://communityblog.fedoraproject.org/exploring-our-bugs-part-1-the-basics/

Ideally, you answer all of the questions in this section when the bug is filed
before any real debugging work begins. But partial triage is better than no
triage, and the answers may change as the report is investigated further.

Create a Triage Process
Problem: There’s no coordinated process for triaging bugs. Some get triaged
right away. Some don’t get triaged at all. Some get triaged twice.

Once the questions in the previous section are answered, the bug report is
appropriately marked as triaged. Then you send it off to the developers to get
fixed. But how did you answer those questions in the first place?

This is one of the most challenging aspects you’ll face as a program manager
in an open source project. It is labor-intensive work that doesn’t appeal to
most people, so it scales very poorly. Small projects probably don’t have
enough bugs to need a process. Large projects have too many bug reports to
reliably triage each one. This section describes a process that can work for
the middle-sized projects, but don’t feel bad if you find you end up triaging
bugs on an ad hoc basis.

First, you must assemble a triage team. Bug triage is difficult, often thankless
work. Don’t be surprised if volunteers are scarce. Not just any volunteers will
do. Triagers need a moderate understanding of how the project works at a
technical level. If the project has multiple components, they need to know
what each one does and doesn’t do so they can sort it into the right pile. But

• Click HERE to purchase this book now. discuss

Triage Bugs • 7

https://communityblog.fedoraproject.org/exploring-our-bugs-part-1-the-basics/
http://pragprog.com/titles/bcosp
http://forums.pragprog.com/forums/bcosp

again, some triage is better than no triage. If you can get someone to do basic
categorization and check that the report contains the required information,
that’s a big help. Over time, if they stick around, they’ll learn how the pieces
fit together.

Next, let’s figure out how the team will interact. Although doing a live triage
meeting is a great way to share knowledge, it’s slow and not particularly
accessible for a distributed volunteer team. Consider pairing newcomers with
an experienced person for a brief period to learn the ropes, but after that,
your triagers will work mostly independently. Since, unlike medical triage,
they’re not making life or death decisions, it’s okay for them to be fast and
wrong. But they should have a channel to communicate with each other to
ask questions or get help on something that truly stumps them. Regular
meetings to discuss patterns, ask questions, and ask for a second opinion
provide the team with an opportunity to grow.

Of course, there has to be some way to get the new bug reports to the triage
team, so let’s look at a few options. The simplest way is to have new reports
automatically assigned to the team. Triagers can pick bugs out of the team’s
queue and assign them to the right place (or leave them unassigned) once
the bug report is ready. The downside is that if the triage team doesn’t get to
a bug report, it’ll sit there and not get fixed. An alternative is to have a report
that lists the new, untriaged bugs and have triagers work from that. This
means if a developer starts working on a bug before the triage team gets to
it, they do their own triage. That’s fine, since the point is to help get the bugs
fixed, not win a turf war. When someone triages the bug report, they apply a
label (however your bug tracker implements this) to indicate that it’s done.

Although the word triage comes from the French word for sorting, the “tri-
age” spelling implies that it’ll age you three times as fast. That’s a reasonable
interpretation. Do what you can to recognize and reward your triage team for
the work they do. And expect to see a lot of turnover on the team.

Prioritize Bugs
Problem: No one is sure which bugs are the most important. Trivial bugs get
fixed long before serious bugs.

The priority of a bug—in which order it gets fixed—is generally up to the
person working on it. People are contributing on a volunteer basis; you can’t
dictate priorities to them. By and large, they’ll work on the bugs that they
think are important, and their own interests and abilities are factors in that
assessment. But most developers understand that being in a community

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/bcosp
http://forums.pragprog.com/forums/bcosp

means taking the community’s priorities into account. That means the com-
munity has some say in what bugs are most important. So let’s develop a
framework for evaluating a bug’s priority from the community’s perspective,
not the individual’s.

Ask Questions
Problem: Each contributor prioritizes differently. There’s no consistency in
priorities, which frustrates contributors and users alike.

As with triage, you ask a set of questions to set a bug’s priority. But sometimes
questions need technical investigation of the bug before they can be answered.
And while basic triage mostly involves objective decisions about a bug report,
you make subjective decisions for prioritization. Ask the following questions
when you’re evaluating a bug’s priority:

• Can physical harm result from this bug? We often talk about the Internet
like it’s separate from “real life.” This is wrong. The software your project
produces can be physically harmful. For example, a poorly secured web
application might leak the mailing address of a user. Software that controls
hardware could cause the device to draw too much current and start a
fire. Thankfully these cases are rare, but you must be aware.

• Does this bug cause data loss or corruption? Yes, backups are important.
No, most people don’t have a sufficiently robust backup scheme in place.
A bug that causes data loss can be enough to scare users away forever.
If it happens in a business environment, it could cost your user real
money. If it happens at home, it could result in the loss of irreplaceable
mementos—pictures from grandma’s 90th birthday party or a video of a
baby’s first steps.

• Does this bug allow unauthorized access? Bugs that allow someone to
access—or worse, modify—systems or data they’re not supposed to are
bad. Even if no physical harm results, it could lead to a loss of data. A
system may be used to send a harassing, fraudulent, or otherwise
impermissible message. It could incur financial costs, or cause harm to
someone’s reputation.

• Is accessibility reduced by the bug? Software is only useful to the degree
that people can use it. If a bug breaks accessibility features, that makes
it less useful. This might include screen reader functionality or the ability
to resize text. If a GUI or website can’t be used without a mouse, that’s
an accessibility bug, too.

• Click HERE to purchase this book now. discuss

Prioritize Bugs • 9

http://pragprog.com/titles/bcosp
http://forums.pragprog.com/forums/bcosp

• Is the default configuration affected? Most people won’t deviate far from
the default configuration. It represents your project’s opinionated view
on how the software should work. So if there’s a bug in the default, that’s
more important than a bug in a custom configuration, all other things
being equal. If nothing else, a bug in the default configuration is likely to
affect a much larger portion of the user base.

• Do you not have a reasonable work-around? If there’s a way to avoid the
bug, or at least to mitigate the harm, then it might go further down the
priority list. “Reasonable” is doing a lot of work here. The work-around
has to be something that a typical user can do easily and without signifi-
cant loss of functionality.

• Does the bug affect all platforms? In an ideal world, it doesn’t matter which
hardware and operating system are in use. A bug is a bug. But in the real
world, not all platforms are the same. If the bug only occurs on Windows
3.1 running on an i286 processor, that’s probably at the bottom of the
pile. The important platforms vary from project to project. For Internet of
Things projects, ARM processors are probably important, but mainframes
are not.

• Does the bug impact any key downstreams you have? If users often or
primarily get to your project’s software by way of a downstream, this is a
factor to consider. A bug that prevents a popular downstream project
from working should move up the stack in most cases.

• Is the bug embarrassing to your project’s reputation? Some bugs don’t
cause any particular harm, but they still make you look bad. Maybe you
misspelled your project in the loading screen. Perhaps the insulting error
message you put in as a placeholder didn’t get removed before release. It
could be related to functionality, too. If it takes 30 seconds for a WiFi
connection to be available, that’s functional but it’s also annoying. They
say that there’s no such thing as bad publicity, but most of us would
rather not have people saying bad things about us or our work.

One question remains that lends itself to a more objective decision (or at least
a binary response). Is this something the software must always (or never) do?
In other words, will you delay a release if you find a bug like this. We call this
a “release blocker,” which we’ll cover in Set Release Criteria, on page ?. For
now, let’s assume that a bug report in your bug tracker is for a version that
has already been released, so it’s too late to be a blocker.

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/bcosp
http://forums.pragprog.com/forums/bcosp

Rate the Priority
Problem: The priority of a bug isn’t clearly and consistently communicated.

In the previous section, we asked a lot of questions, and all of them have
answers that are more spectrum than binary. You’re probably tempted right
now to come up with a rating system and give each bug a score. Don’t. Once
you get beyond a few bugs per developer, it’s less “a stack” and more “assorted
piles.” Remember that these decisions have a large amount of subjectivity,
so attaching an exact value is lying to yourself. It’s not even a particularly
useful lie, as it’ll cost a lot of your time to develop and refine the scoring
system. Even then, a developer looking for a bug to fix might not fix the
highest-scoring bug because they may not have the knowledge or skills to
tackle that particular one.

So how do you put the answers to those questions into practice? Let’s say a
bug’s priority falls on a low/medium/high scale. The questions are roughly
in order of descending importance. The sooner you answer “yes” to a question,
the higher the bug’s priority. The more “yes” answers a bug gets, the higher
its priority. So you might say that any bug that gets a “yes” to the first four
questions previously discussed is a high priority, a “yes” to the remainder is
medium, and all “no” answers is low. But if a medium priority bug has three
or more “yes” answers, it’s also a high-priority bug.

Another option is to have the priority be a binary state instead of a low/
medium/high scale. With a binary state approach, a bug is either prioritized
or not. A community member (whether user or contributor) nominates a bug
and then a group evaluates it and makes a decision. The group can be fixed
or variable (for example, “whoever shows up to the meeting this week”), but
you should make sure to notify the assignee and the person who nominated
it so they can weigh in on it. If you accept a bug as prioritized, that signals
to the assignee that they should work on this one first. This can be particu-
larly helpful if your project has a corporate sponsor or at least corporate
contributors. You can use prioritized bugs to say “this is where your support
is most valuable to the community at the moment.”

You can also choose a mixed approach. You can have low/medium/high
priority set by a developer or the triage team, but also have an extra tier of
highest priority that requires an approval process. However you do it, you
need to be aware of the proportion of high-priority bugs. If everything is the
top priority, nothing is.

And of course, document the prioritization guidelines in your project’s con-
tributor documentation so that everyone can find them. If you have a triage

• Click HERE to purchase this book now. discuss

Prioritize Bugs • 11

http://pragprog.com/titles/bcosp
http://forums.pragprog.com/forums/bcosp

team, and they’re relatively skilled, they can set the priority at triage time.
(Of course, with the understanding that it may be adjusted by whichever
developer ends up working on it.) If you don’t have a triage team, each
developer can apply the agreed-upon prioritization guidelines as they work
on a bug report.

• 12

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/bcosp
http://forums.pragprog.com/forums/bcosp

