
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Import an Existing Infrastructure Resource with Terraform
You might think that it would be extremely time-consuming to replicate
already created remote resources in Terraform. Well, it’s not. You can use
one simple Terraform block (an import block) and two simple commands (terraform
plan and terraform apply) to do so.

When we introduced Terraform in Chapter 2, we said when dealing with an
infrastructure resource, you should always go to the Terraform registry and
find the documentation of the provider and its specific resources. We also
said each resource’s docs give you import instructions. Keeping that in mind,
the first resource you’ll import is your EC2 instance. The Terraform resource
related to EC2 instances is called aws_instance. Go to that resource’s documen-
tation,2 and you’ll find the import instructions at the bottom of the page.

You’ll see that there are two different ways of importing a resource: either
with an import block or by executing the terraform import command. We prefer
using an import block as it allows you to see a plan of the import that you want
to do before actually importing the resources. The terraform import command,
on the other hand, imports the resource directly into your state without letting
you see what it’s importing first. Using an import block is safer and adheres
to the Terraform work cycle discussed in Chapter 2, which includes planning
your state modifications before you make them.

In the aws_instance resource documentation, you’ll see that the import block has
the following structure:

import {
to = RESOURCE_ADDRESS
id = ID

}

The to argument refers to the address that will be used in your Terraform
configuration/state for this resource. It expects a RESOURCE_ADDRESS as a value.
The id argument refers to the ID of the remote resource that you’re wanting
to import. In this case, the ID will be the instance ID of your EC2 instance,
which you can find in the Instances tab of the EC2 dashboard (shown in the
following figure).

2. https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/instance#import

• Click HERE to purchase this book now. discuss

https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/instance#import
http://pragprog.com/titles/beamops
http://forums.pragprog.com/forums/beamops

So, to import your EC2 resource into your Terraform configuration, you need
to use an import block. To create this import block, you need a Terraform config-
uration file. You’ll create one in the next section using Terraform modules.

Set Up Terraform and Import Your EC2 Instance
A Terraform module is a collection of .tf files kept together in a directory as a
way to encapsulate and organize Terraform configurations into a self-contained
and reusable unit. By defining your EC2 setup within a Terraform module,
you can reuse that configuration to create the same resource across various
different AWS environments. This is important in maintaining environment
integrity because it ensures consistency when deploying resources. In this
book, we’ll only be showing you how to create your production environment,
but in a real-world project, you’d likely have a staging environment also.
You’ve actually already had some practice with modules without knowing it.
The project management Terraform code you created in Chapter 2 is also a
module.

To create your new AWS infrastructure module, create a new cloud/aws/compute
/swarm nested directory (for example, where aws is inside cloud and so on) inside
your modules folder. In that module, create a new main.tf file. This is where your
EC2 configuration will live.

The first step in adding your EC2 instance to your Terraform configuration
is to add the aws provider to your new main.tf file. As we mentioned in Chapter
2, there is a Use Provider button in the top right-hand corner of any resource’s
docs that gives you the installation instructions for that resource’s provider.
Copy the code that’s shown when you click this button and paste it into your
main.tf file. You don’t need to copy over the provider block as you won’t be adding
any configuration options. Your main.tf file should look something like this:

in modules/cloud/aws/compute/swarm/main.tf

terraform {
required_providers {

aws = {
source = "hashicorp/aws"
version = "5.13.1"

}

• 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/beamops
http://forums.pragprog.com/forums/beamops

}
}

Great. Any time you create a new Terraform configuration or add any new
providers to your configurations, you need to run the command terraform init.
Think of it like a mix deps.get. It’s important that you run terraform init in a folder
that’s specific to your production environment. If you were to initialize your
production Terraform configuration inside your cloud/aws/compute/swarm module,
you couldn’t then create a staging configuration in the same directory. In
other words, your module wouldn’t be reusable. To encapsulate your
production environment configuration in one isolated place, create a new
folder called environments in the root of your project and a subfolder called
production inside environments. In this environments/production folder, create a new
main.tf file and import your swarm module. You can do this using the module
<BLOCK TYPE> and its source attribute. Your environments/production/main.tf file
should look like this:

in environments/production/main.tf

module "swarm" {
source = "../../modules/cloud/aws/compute/swarm"

}

Now, cd into your new environments/production folder and run terraform init. Your
initial provider configuration is complete!

But before you can try importing your EC2 instance, there’s another crucial
step to take: configuring your AWS access keys. Without configuring these,
Terraform will throw an error because it won’t know which AWS account to
use when looking for the resource to import. To create your access keys, follow
the Amazon documentation.3

Don’t worry about the warning of not using root keys. Ideally, you’d use access
keys that have IAM roles/permissions attached to them, but that’s not
something that we’ll focus on in this book. Using the root access keys that
don’t restrict your permissions will simplify what we’re doing in this chapter
and throughout the book. You can find information on how to follow a more
secure approach by assuming IAM roles.4 Once you’ve created the keys, either
add them to your shell profile or export them in your terminal like so:

$ export AWS_ACCESS_KEY_ID="YOUR_AWS_ACCESS_KEY_ID"
$ export AWS_SECRET_ACCESS_KEY="YOUR_AWS_SECRET_ACCESS_KEY"
$ export AWS_REGION=eu-west-1

3. https://docs.aws.amazon.com/accounts/latest/reference/root-user-access-key.html
4. https://developer.hashicorp.com/terraform/tutorials/aws/aws-assumerole

• Click HERE to purchase this book now. discuss

Import an Existing Infrastructure Resource with Terraform • 5

https://docs.aws.amazon.com/accounts/latest/reference/root-user-access-key.html
https://developer.hashicorp.com/terraform/tutorials/aws/aws-assumerole
http://pragprog.com/titles/beamops
http://forums.pragprog.com/forums/beamops

To validate that you’ve exported the keys properly, you can run env | grep AWS.
You should see the following result:

$ env | grep AWS
AWS_ACCESS_KEY_ID=******************************
AWS_REGION=eu-west-1
AWS_SECRET_ACCESS_KEY=******************************

Okay, you have configured your initial Terraform provider and have set your
AWS keys. Now you must configure the import block. import blocks must be
defined in the root module. Copy and paste the example import block given in
the aws_instance documentation so that it sits under your current module block
in your modules/environments/production/main.tf file. Change the value of the to
argument to module.swarm.aws_instance.my_swarm to tell Terraform where you’ll put
the resource (inside your swarm module), and then change the value of the id
argument to be the ID of your EC2 instance. Your modules/environments/production
/main.tf file should now look something like this:

in environments/production/main.tf

module "swarm" {
source = "../../modules/cloud/aws/compute/swarm"

}

import {
to = module.swarm.aws_instance.my_swarm
id = "YOUR_EC2_INSTANCE_ID"

}

We mentioned that import blocks allow you to plan your import before you do
it. So, let’s do just that. Run terraform plan inside your environments/production
folder as we’ve done here:

$ terraform plan
Planning failed. Terraform encountered an error while generating this
plan.
│
│ Error: Import block target does not exist
│
│ on main.tf line 7:
│ 7: import {
│
│ The target for the given import block does not exist. The specified
│ target is within a module, and must be defined as a resource within
│ that module before anything can be imported.

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/beamops
http://forums.pragprog.com/forums/beamops

