
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

CHAPTER 4

Set Up Integration Pipelines
with GitHub Actions

In Chapter 2, we explained how turning the project management of a software
product into a development task improves team efficiency because it
empowers the whole team and shortens the feedback loop between developers
and product owners. In this chapter, you’re going to learn how to further
shorten this feedback loop and adopt proactive habits for testing your code
by implementing a continuous integration (CI) pipeline with GitHub Actions.

A CI pipeline helps you ensure that your code works as you expect it to. It
streamlines the delivery process of your application by seeking out bugs
and/or issues before they’re reported. We believe that the CI pipeline must
be implemented as soon as possible when delivering a software product to
ensure your code is reliable from the start.

Closely related to the CI pipeline is the concept of “continuous improvement.”
The Japanese term for continuous improvement is kaizen. By using a CI
pipeline, you’re following what’s known as the Kaizen principle—the idea that
small, ongoing changes can lead to significant improvements. Exercising this
principle is essential in software development because it encourages better
quality and more reliable code. You should always aim to ship less code, more
often.

After reading this chapter, you’ll understand the mandatory steps that an
Elixir application must follow to safely ship to production. You’ll also learn
the different triggers for a GitHub Action that will run your CI pipeline, and
you’ll build on your understanding of Docker by pushing your Docker image
to the GitHub container registry in the CI. By the end of this chapter, you’ll
close three of the CI/CD GitHub issues that you created in Chapter 2.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/beamops
http://forums.pragprog.com/forums/beamops

As with the previous chapter, we’ll continue following our same development
approach of manually implementing the necessary steps first and then auto-
mating them. Let’s get started and implement the mandatory steps that each
CI pipeline for an Elixir application must follow.

Mandatory CI Steps for a CI Pipeline
When implementing a CI pipeline, you must always distinguish between
mandatory and nonmandatory steps. Mandatory steps are the minimum
requirements that your application must meet before being shipped. Non-
mandatory steps are nice-to-haves that don’t affect the basic running of your
application. In the case of an Elixir application, the mandatory steps are to
ensure that: the code compiles, already compiled files and previously fetched
dependencies are cached, the tests pass, the code is properly formatted, the
code has been analyzed by Dialyzer, and that no unused dependencies exist.
Let’s go through each step, one by one, starting with code compilation.

Code Compilation
The first, and most important, step is to ensure your code compiles properly.
As we mentioned earlier, rather than jumping straight into automation, first
try to compile your code locally. To do so, use the mix compile command. To
ensure that you compile your code from an initial, untouched state, as your
CI would do, remove your _build directory from the project you created in the
previous chapter and then compile your code by running rm -rf _build &&
MIX_ENV=test mix compile as we’ve done here:

$ rm -rf _build && MIX_ENV=test mix compile
==> file_system
Compiling 7 files (.ex)
...

You’ll notice we’ve set the MIX_ENV to be test. This is the environment you’ll use
when running your workflow. Great. You know that your code successfully
compiles. A handy way to check whether the last terminal command was
successful or not is to use the bash command echo $?. If you run it, you’ll see
that your terminal prints 0, indicating a success.

Now that you know how to successfully compile your code, you can go ahead
and implement your GitHub Action. However, we don’t recommend doing this
just yet. Instead, we advise that you also figure out a way to make your desired
result fail. This is an important step in CI pipeline creation as it removes any
false positives in your code. We recommend that you consistently follow this
approach:

• 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/beamops
http://forums.pragprog.com/forums/beamops

1. Make a test that fails locally.
2. Ensure that the test fails in the CI.
3. Fix the test so that it passes locally.
4. Validate that the test passes in the CI.

To make a test that fails locally, create a warning in your code by adding an
unused module attribute to your lib/kanban_web.ex file. You can see how we’ve
done so here:

in lib/kanban_web.ex

defmodule KanbanWeb do
@unused_attr ""

end

Now, compile your code again, but this time using the --warnings-as-errors flag
as we’ve done here:

$ MIX_ENV=test mix compile --warnings-as-errors
Compiling 1 file (.ex)
warning: module attribute @unused_attr was set but never used

lib/kanban_web.ex:2

Compilation failed due to warnings while using the --warnings-as-errors
option

As the name suggests, the --warnings-as-errors option turns any code warnings
into errors and means that if your code has any warnings when trying to be
compiled, the compilation will fail. This is a useful option in CI pipelines as
it preserves the integrity of your codebase. If you don’t use this flag, the daily
development workflow of your application might become unhealthy. Systems
deteriorate pretty quickly if you start neglecting them, and so you should
always try to fix a warning as soon as it arises. To do this, you must ensure
that the CI doesn’t let you deliver any code that has a warning.

Now that you know how to successfully and unsuccessfully compile your
codebase, let’s move on to creating the GitHub Action.

Add the mix compile Step to Your CI workflow

GitHub Actions are always defined in a YAML file within the .github/workflows
directory. There are eight main, first-level keys that can be used in a GitHub
workflow file, which you can see in detail in their documentation.1 We’ll only
be focusing on the following four keys in this chapter:

1. https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions

• Click HERE to purchase this book now. discuss

Mandatory CI Steps for a CI Pipeline • 5

https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions
http://pragprog.com/titles/beamops
http://forums.pragprog.com/forums/beamops

• name: gives a name, or ID, which will be used to refer to your workflow.
This name is displayed in the Actions tab of the repository.

• on: defines the triggers that will produce a CI job, such as pushing to a
repository or opening a pull request.

• env: defines environment variables that will be available in your CI job.

• jobs: defines a list of “actions” that will be executed in the CI pipeline. Each
job can have an ID, a name, a runner that specifies on which machine
the job is run, environment variables, a set of steps, and a set of services.

To create your workflow, create a new .github/workflows folder at the root of your
project and inside that folder a file called ci_cd.yaml and then paste the following
code snippet into the file. We’ll then go through each of the file components.

in ci_cd.yaml

name: CI/CD Elixir

on:
push:
workflow_dispatch:

jobs:
ci:

runs-on: ubuntu-latest
name: Compile
env:
MIX_ENV: test

steps:
- uses: actions/checkout@v4

- name: Setup Elixir
uses: erlef/setup-beam@v1.17.3
with:

version-file: .tool-versions
version-type: strict

- name: Get dependencies
run: mix deps.get

- run: mix compile --warnings-as-errors

As you can see, we’ve named the workflow CI/CD Elixir. CI/CD stands for Con-
tinuous Integration/Continuous Deployment. This chapter will only focus on
the CI part. You’ll implement the CD part in Chapter 7. We then configured the
on key of the workflow so it’s triggered either by the workflow_dispatch event, which
means you can manually trigger the workflow, or by the push event, meaning
each time you push to your remote repository. You’ll tweak these on events
later, as it’s not very cost-effective to trigger a workflow on each push, but

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/beamops
http://forums.pragprog.com/forums/beamops

we’re using that event for now so that you can test the workflow. Lastly, we’ve
used the jobs key to define an action with the ID ci and name Compile. The id is
what you could use later in the workflow if you wanted to refer to that specific
job, whereas the name is what will appear in the logs of the run to refer to
that specific part of the workflow. The machine used to run your workflow is
called a runner. We’ve specified that the job will run on an ubuntu-latest machine,
use the MIX_ENV=test environment variable, and have the following steps:

1. Check out your project code in the runner’s machine.

2. Install Elixir on the runner’s machine using the .tool-versions file you created
in Chapter 1.

3. Get your project’s dependencies.

4. Compile your project’s code.

A step is either a shell script, defined by the key run, or a predefined action,
defined by the key uses. In the earlier example, we’ve used both keys. A prede-
fined action is an open-source, reusable unit of code that performs a particular
task, such as checking out your code or installing a programming language
and making it available in your runner’s path, as you can see in the first two
steps of the previous code snippet. GitHub has a marketplace2 where you can
search for all different kinds of actions. When installing the project dependen-
cies, we used the run key to execute the command mix deps.get without having
to use a predefined action. This is because the previous “Setup Elixir” step
installs Erlang on the runner’s machine, which means that all subsequent
job steps can run any mix command as normal.

You’ll see that the second step sets the Elixir version by reusing the .tool-versions
file that you created in Chapter 1 to define the versions of the tools your
application needs. By using the same tool to set up your environment and
your CI pipeline, you ensure environment integrity by making it so that your
application is always being run under almost all of the same conditions.

Okay, great! You’ve defined your workflow. Now add and commit both your
ci_cd.yaml and lib/kanban_web.ex files with a message of your choice and then push
your new commit to your remote repository. Your workflow will now be running
in your GitHub account. Many developers choose to see the results of their
jobs in the GitHub UI. However, we recommend using the GitHub CLI as it
allows you to see the workflow output directly in your terminal rather than

2. https://github.com/marketplace?type=actions

• Click HERE to purchase this book now. discuss

Mandatory CI Steps for a CI Pipeline • 7

https://github.com/marketplace?type=actions
http://pragprog.com/titles/beamops
http://forums.pragprog.com/forums/beamops

having to switch between your terminal and the browser. We’ll look at the
basic GitHub CLI commands in the next section.

Choosing Your Branch

The workflow in this section only works if it’s run on the main
branch. This is because the workflow_dispatch trigger only works on the
default branch. Pushing to main in this instance isn’t an issue as
you’re setting up a pipeline for a project still in its development phase
and you’re working by yourself. If you were to be working in a team
or setting up a CI pipeline for an existing project with multiple
developers, you should test it by either implementing this pipeline
using branches or a replica project in your personal account.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/beamops
http://forums.pragprog.com/forums/beamops

