
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Unpacking the Concept of Embeddings
Text is more complex than colors. You need a way to generate vectors for
titles or paragraphs so that two texts with similar meanings produce points
that are close together in vector space. One common technique is to create
something called an embedding.

An embedding is just a long list of numbers. Each number represents a feature
extracted by a machine learning model. If you use OpenAI’s embedding
model, each vector has 1,536 dimensions. You can think of these as axes in
a massive coordinate space.

The goal is for texts that mean similar things to have similar embeddings.
For example, the phrases “Learning JavaScript” and “Mastering JavaScript”
should land near each other in vector space, since they share both subject
matter and educational intent. A phrase like “Exploring Ruby” might be close
as well, because it has a similar structure and purpose. But something like
“Deploying Kubernetes at Scale” would be much farther away, even though
it also describes a technical skill, because it belongs to a completely different
domain.

You create an embedding by feeding your text into a pre-trained model. That
model has already learned how language works by training on massive
datasets. It compresses everything it knows into a set of internal weights.
When you pass in new text, it produces a vector that captures key aspects of
the input. This process may feel like a black box for now, but we will demys-
tify it step by step.

Understanding Similarity
Once you have embeddings, the next question is how to compare them. In
other words, how can you tell which vectors are close to each other?

To compare embeddings, we need a way to measure how similar two vectors
are. The most common methods are cosine similarity, which measures the
angle between vectors (regardless of their size), and dot product, which con-
siders both their direction and magnitude. Cosine similarity answers “are
these vectors pointing the same way?” while dot product adds the question,
“and how strong is that signal?”

To make it more tangible, imagine comparing fruit. Let’s say we use made-up
3D embeddings to represent “apple,” “banana,” and “orange.” These numbers
might reflect how sweet, fibrous, or acidic each fruit is. If the vectors are close,
we assume the fruits are similar.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/bgvector
http://forums.pragprog.com/forums/bgvector

In fact, let’s calculate it.

understanding_vector_search/similarity_applies_bananas_oranges.js
const vectors = {

Apple: [0.9, 0.1, 0.0],
Banana: [0.7, 0.3, 0.0],
Orange: [0.8, 0.2, 0.1],

};

/**
* Calculate the dot product of two vectors.
* @param {Array<number>} vec1 - First vector.
* @param {Array<number>} vec2 - Second vector.
* @returns {number} - Dot product of the two vectors.
*/

const calculateDotProduct = (vec1, vec2) =>
vec1.reduce((sum, value, index) => sum + value * vec2[index], 0);

/**
* Calculate the magnitude of a vector.
* @param {Array<number>} vec - The vector.
* @returns {number} - Magnitude of the vector.
*/

const calculateMagnitude = (vec) =>
Math.sqrt(vec.reduce((sum, value) => sum + value ** 2, 0));

/**
* Calculate the cosine similarity between two vectors.
* @param {Array<number>} vec1 - First vector.
* @param {Array<number>} vec2 - Second vector.
* @returns {number} - Cosine similarity.
*/

const calculateCosineSimilarity = (vec1, vec2) => {
const dotProduct = calculateDotProduct(vec1, vec2);
const magnitude1 = calculateMagnitude(vec1);
const magnitude2 = calculateMagnitude(vec2);
return dotProduct / (magnitude1 * magnitude2);

};

// Example: Calculate cosine similarity between "Apple" and "Banana"
const apple = vectors.Apple;
const banana = vectors.Banana;

const similarity = calculateCosineSimilarity(apple, banana);

console.log(`Apple/Banana similarity: ${similarity.toFixed(3)}`);

This code calculates the cosine similarity between “apple” and “banana.” Even
though the numbers are arbitrary, the math shows how closely aligned the
vectors are. That alignment becomes the basis for comparison in vector search.

• 4

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/bgvector/code/understanding_vector_search%2Fsimilarity_applies_bananas_oranges.js
http://pragprog.com/titles/bgvector
http://forums.pragprog.com/forums/bgvector

Key Takeaways
In this chapter, you learned that a vector is just a list of numbers and that
similarity between vectors can be measured with cosine similarity or dot
product. You saw how embeddings represent complex data as vectors and
how systems use those vectors to find the most relevant matches.

These ideas might feel new now, but you’ve already used them. The title-
matching script in Chapter 1 embedded and compared titles using these exact
principles. With a better understanding of what was going on under the hood,
you are now ready to go deeper.

In the next chapter, we’ll explore how embeddings are actually generated,
what makes a good embedding, and why these representations are so powerful
for building intelligent search systems.

• Click HERE to purchase this book now. discuss

Key Takeaways • 5

http://pragprog.com/titles/bgvector
http://forums.pragprog.com/forums/bgvector

