
Extracted from:

Small, Sharp Software Tools
Harness the Combinatoric Power of
Command-Line Tools and Utilities

This PDF file contains pages extracted from Small, Sharp Software Tools, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Small, Sharp Software Tools
Harness the Combinatoric Power of
Command-Line Tools and Utilities

Brian P. Hogan

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Susan Conant
Development Editor: Tammy Coron
Copy Editor: L. Sakhi MacMillan
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-296-1
Book version: P1.0—May 2019

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Exploring Network Connections
Computers connect to other computers using an IP address and a port. Ports
allow multiple network connections from a single machine. Imagine that the
IP address is the street address to an apartment complex, and each port is
an apartment number in the building.

For example, when you make a request to google.com with your web browser,
your browser uses port 80, the default port for web traffic. To complete that
request, your browser needs to figure out which IP address google.com resolved
to, so it makes a request to a DNS server using port 53, the default port for
DNS queries.

When you installed the openssh-server package, your Ubuntu machine started
listening for incoming connections on port 22. When you connected to the
server, your client made an outgoing connection on port 22.

Your OS makes all kinds of network connections to remote systems, and
programs you install do as well. Unfortunately, so do malicious programs.
It’s not a bad idea to keep tabs on your computer’s communication.

A handful of tools will let you see which ports are in use. The two you’ll look
at are netstat and ss.

netstat is older and more universally available on servers and Linux operating
systems. Like ifconfig, it’s also not supported anymore. You’ll explore it first
and then look at other options. On your Ubuntu virtual machine, stop the
SSH server:

(ubuntu)$ sudo systemctl stop sshd

Now, you’ll use netstat to look at what’s listening for incoming TCP connections.
Execute this command on your Ubuntu virtual machine:

(ubuntu)$ netstat -lt
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 puzzles:domain *:* LISTEN
tcp 0 0 localhost:ipp *:* LISTEN
tcp6 0 0 ip6-localhost:ipp [::]:*

The -l flag only displays servers or programs that are listening for connections.
The -t flag only shows TCP connections.

netstat shows the protocol, the number of bytes queued up for receiving and
sending, the local address, the remote address, and the state. In this example,
everything is normal. Three entries are listening for connections, but there’s

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/bhcldev
http://forums.pragprog.com/forums/bhcldev

no data in either the receive queue or the send queue. The Foreign Address
field shows *:*, which indicates there’s no remote connection, and the LISTEN
state shows there’s no connection established yet.

If you’re wondering what those things are, hold tight; you’ll explore that in a
bit. But first, start up the SSH server again:

(ubuntu)$ sudo systemctl start sshd

Then, look at the connections again:

(ubuntu)$ netstat -lt
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 puzzles:domain *:* LISTEN
tcp 0 0 *:ssh *:* LISTEN➤

tcp 0 0 localhost:ipp *:* LISTEN
tcp6 0 0 [::]:ssh [::]:* LISTEN➤

tcp6 0 0 ip6-localhost:ipp [::]:* LISTEN

This time you see two new entries in the output related to SSH.

Now, you can connect from your local machine to your Ubuntu virtual machine
via SSH:

(local)$ ssh brian@192.168.99.100

Then, on the Ubuntu virtual machine, look at the connections again, but this
time use netstat -at. The -a switch looks at active connections as well as ones
that are waiting:

(ubuntu)$ netstat -at
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 puzzles:domain *:* LISTEN
tcp 0 0 *:ssh *:* LISTEN
tcp 0 0 localhost:ipp *:* LISTEN
tcp 0 0 puzzles:ssh 192.168.99.1:61809 ESTABLISHED➤

tcp6 0 0 [::]:ssh [::]:* LISTEN
tcp6 0 0 ip6-localhost:ipp [::]:* LISTEN

You can see the connection between the machines now.

So what are those other entries in the list? On Linux systems like Ubuntu,
you can see which program or process owns the connection by executing
netstat with sudo and adding the -p switch. You’ll need sudo to see information
about ports lower than 1024:

(ubuntu)$ sudo netstat -atp
Active Internet connections (servers and established)
Proto ... Local Address Foreign Address State PID/Program name

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/bhcldev
http://forums.pragprog.com/forums/bhcldev

tcp ... puzzles:domain *:* LISTEN 837/systemd-resolve
tcp ... *:ssh *:* LISTEN 14317/sshd
tcp ... localhost:ipp *:* LISTEN 7024/cupsd
tcp ... puzzles:ssh 192.168.99.1:61809 ESTABLISHED 14363/sshd: brian...
tcp6 ... [::]:ssh [::]:* LISTEN 14317/sshd
tcp6 ... ip6-localhost:ipp [::]:* LISTEN 7024/cupsd

• Click HERE to purchase this book now. discuss

Exploring Network Connections • 7

http://pragprog.com/titles/bhcldev
http://forums.pragprog.com/forums/bhcldev

This output shows that the systemd-resolve and cups services are listening for
connections. systemd-resolve is a service for resolving hostnames, and cups is a
service for printing. These are built-in services configured by default when
you installed Ubuntu. But the output also shows which user is connected to
the SSH server, which can be very helpful.

Unfortunately, not all versions of netstat support this option. For example, the
BSD version on macOS won’t show you this information. Thankfully, some
workarounds turn out to be a little better than netstat.

The lsof command lets you see which files are associated with processes. On
a Linux-based system, everything is represented as a file, including network
connections. This means you can use lsof to perform the same tasks that netstat
performs.

To list all services listening for connections over TCP, execute this command:

(ubuntu)$ sudo lsof -nP -iTCP -sTCP:LISTEN

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
systemd-r 321 systemd.. 13u IPv4 16300 0t0 TCP 127.0.0.53:53 (LISTEN)
cupsd 7024 root 10u IPv6 118530 0t0 TCP [::1]:631 (LISTEN)
cupsd 7024 root 11u IPv4 118531 0t0 TCP 127.0.0.1:631 (LISTEN)
sshd 15866 root 3u IPv4 169492 0t0 TCP *:22 (LISTEN)
sshd 15866 root 4u IPv6 169508 0t0 TCP *:22 (LISTEN)

The -n switch tells lsof not to resolve domain names, which makes it run a
lot faster. The -iTCP switch selects files associated with Internet addresses
using the TCP protocol. The -sTCP:LISTEN selects only files in a listening state.
From the results, you can see that the SSH server is running, as well as
the systemd-resolver and cups services.

If you switch -sTCP:LISTEN with -sTCP:ESTABLISHED, you will see active network
connections:

(ubuntu)$ sudo lsof -nP -iTCP -sTCP:ESTABLISHED
COMMAND PID USER ... NODE NAME
sshd 15879 root ... TCP 192.168.99.100:22->192.168.99.1:64220 (ESTABLISHED)
sshd 15905 brian ... TCP 192.168.99.100:22->192.168.99.1:64220 (ESTABLISHED)

In this case, you see two listings for the open SSH connection. One represents
the SSH server itself, running as root, and the other represents the established
client connection.

Before you finish up, let’s look at the ss command, which is the modern
replacement for netstat. It’s part of the iproute2 package on Linux systems.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/bhcldev
http://forums.pragprog.com/forums/bhcldev

To see listening TCP connections along with which user and process, execute
ss with the -ltp switches:

(ubuntu)$ sudo ss -ltp
State Recv-Q Send-Q Local Address:Port Peer Address:Port
LISTEN 0 5 127.0.1.1:domain *:*

users:(("systemd-resolve",pid=837,fd=5))
LISTEN 0 128 *:ssh *:*

users:(("sshd",pid=15866,fd=3))
LISTEN 0 5 127.0.0.1:ipp *:*

users:(("cupsd",pid=7024,fd=11))
LISTEN 0 128 :::ssh :::*

users:(("sshd",pid=15866,fd=4))
LISTEN 0 5 ::1:ipp :::*

users:(("cupsd",pid=7024,fd=10))

The -l switch shows listening sockets, -t shows TCP only, and -p shows the
associated process information.

Unfortunately, macOS doesn’t support ss, so you’ll have to stick with lsof.

These tools are essential for quickly identifying either open ports or ports that
are already in use by a development server. They’re also helpful to identify
which ports you need to open in your firewall.

Let’s look at another versatile tool you should get to know when working with
networks.

Using Netcat
The netcat program, or nc, is the “Swiss Army Knife” of networking tools. With
this one tool, you can connect to remote systems, transfer files, and even
scan ports to see what connections are available.

Determining Open Ports
You can use nc to determine if certain services are running by scanning the
ports associated with those services. This is great for troubleshooting your
own servers, but you don’t want to just go around scanning anyone’s
machines. It sends them traffic, and some systems might think you’re trying
to find security vulnerabilities to exploit. For those reasons, you should only
scan ports on servers you control.

Still, if you’re attempting to see if you can connect to a server from another
machine, or looking to see what ports are listening for connections so you
can close them to improve security, you’ll find this useful.

• Click HERE to purchase this book now. discuss

Using Netcat • 9

http://pragprog.com/titles/bhcldev
http://forums.pragprog.com/forums/bhcldev

For example, you can scan a domain name or IP address to see if a web
server is listening for connections by scanning for port 80, the default port
for web servers:

$ nc -z -v your_domain_or_ip 80

If a web server is running, you’ll see this:

Connection to your_domain_or_ip 80 port [tcp/http] succeeded!

You can also scan ranges of ports. For example, to scan for all ports from 22
(SSH) to 80 (Web), you would execute this command:

$ nc -z -v your_domain_or_ip 22-80

This command takes an incredibly long time to run, as it scans every port
sequentially, attempting to connect. Scanning ranges of ports is usually
something you’d do on one of your own machines to see if some ports are
open that shouldn’t be. Once you know what’s open, you can explore how to
shut them down or block access to them using firewalls.

Making Web Requests
You already used cURL to grab web pages, but netcat can do that too. How-
ever, netcat makes you do it a little more interactively.

First, type this command:

$ nc www.google.com 80

You’ll be greeted by a blank line; netcat is expecting some input. You’re going
to craft your own HTTP request by hand. Type the following two lines:

GET / HTTP/1.1
HOST: google.com

Then, press the ENTER key once more to send a blank line, and you’ll see the
response from the server, including the headers and source code for the
Google home page stream out to your screen.

You can add more data to the request. For example, when you send a request
to a web server, the browser identifies itself, and oftentime sends along the
URL of the page the request came from, also known as the referer (which is
actually spelled incorrectly, believe it or not.) You can use nc to specify those
headers, or even make them up.

Try it out. Make a new request:

$ nc www.google.com 80

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/bhcldev
http://forums.pragprog.com/forums/bhcldev

Then, type the following lines in, pressing ENTER after each line:

GET / HTTP/1.1
Host: google.com
User-Agent: Internet Explorer
Referer: awesomeco.com

Press the ENTER key twice to send the request.

This makes a request with your own crafted request headers, which let you
pretend to use Internet Explorer for the request. Why would we do this?
Sometimes web developers write code to prevent people from using certain
browsers, so you can use the User-Agent header to pretend to be something
you’re not and bypass these kinds of restrictions. Of course, a more legitimate
usage is to correctly identify the program you’re using.

Serving Files with Netcat
You can use netcat to serve files if you combine it with a little bit of shell
scripting. Create a file called hello.txt with some text:

$ echo "This is a text file served from netcat" > hello.txt

Now, execute this command to make netcat listen for connections on port
8000 and serve the hello.txt file:

$ while true; do nc -l 8000 < hello.txt; done

This loops indefinitely, listening for connections on port 8000, and then reads
in the file, sending its contents to anything that connects. In another terminal,
make a request with curl:

$ curl localhost:8000
This is a text file served from netcat

Return to the original terminal and press Ctrl+c to stop the loop.

You can use this approach to serve a web page. Create a web page named
index.html with some text:

$ echo "<h1>Hi from netcat</h1>" > index.html

To make a browser render the HTML instead of just displaying the source,
you’ll have to craft a response the browser understands. Instead of just
reading in a file, create an HTTP response. Send the text HTTP/1.1 200OK, followed
by two blank lines, followed by the contents of the file:

$ while true; \
> do echo -e "HTTP/1.1 200 OK\n\n $(cat index.html)" | \
> nc -l 8000; done

• Click HERE to purchase this book now. discuss

Using Netcat • 11

http://pragprog.com/titles/bhcldev
http://forums.pragprog.com/forums/bhcldev

With this running, fire up a browser and go to http://localhost:8000 to see your
page. This is just one more example of how diverse netcat is. But you’re not
quite done.

Realtime Chat with Netcat
You can use nc as an improvised chat system. This isn’t entirely useful, but
it’s a fun exercise to explore, as it shows how netcat can send data in real
time. On your Ubuntu machine, type the following:

(ubuntu)$ nc -l 1337

This starts a chat server listening on port 1337. You can connect to this server
using another machine with nc, specifying the IP address of the chat server:

(local)$ nc 192.168.99.100 1337

At this point, you can type messages on either machine, and the other machine
will display them. Pressing Ctrl+c breaks the connection for both machines.

You can use netcat for lots more, too. You can use it to send files or create secure
internet connections. You’ve just scratched the surface of this tool. Its primary
use is for ad-hoc network diagnostics, but it really is a networking multitool.

Security conscious folks should know that netcat does everything in an
unsecured manner. Use this only on trusted networks.

Your Turn
These additional exercises will help you get more comfortable with the tools
you used in this chapter.

1. Who is the administrative contact for the wordpress.com domain?

2. Which domain will need to be renewed first; heroku.com or google.com?

3. How many IP addresses are associated with heroku.com?

4. Who has more IP addresses associated with their domain: Facebook,
Google, Twitter, Wikipedia, or Amazon?

5. Which of the following IP addresses belongs to a Comcast cable subscriber?
Which one of these belongs to Google?

• 4.2.2.1
• 137.28.1.17
• 24.23.51.253
• 45.23.51.32
• 8.8.8.8

• 12

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/bhcldev
http://forums.pragprog.com/forums/bhcldev

6. Use traceroute on a few of your favorite websites. What similarities do you
see between each? What differences do you see?

7. Use cURL to inspect the headers sent by the following sites.

• http://twitter.com
• http://pragprog.com
• http://news.ycombinator.com
• http://reddit.com
• http://automattic.com

If any sites redirect to a new site, use cURL to make an additional request
using the location header.

8. Use netcat to connect to a few of your favorite websites or the sites in the
previous question.

9. Use cURL with the Open Weather API6 to find the weather forecast for
your area. You’ll need to register for an API key before you can access the
API. What command did you end up using?

10. Explain the difference between these two commands:

• scp -r data username@host:/data
• scp -r data/* username@host:/data

When would you use one over the other?

11. Identify all of the established connections on your local machine.

What You Learned
The tools you used in this chapter will become an essential part of your
arsenal. You’ll revisit a few of them later when you work with networks. You
may need these tools to diagnose networking issues of your own, work with
APIs, or transfer data between computers on your network.

Next, you will take the commands and concepts you have learned so far and
use them to create scripts of commands that you can run over and over to
automate tasks.

6. https://openweathermap.org/api

• Click HERE to purchase this book now. discuss

What You Learned • 13

https://openweathermap.org/api
http://pragprog.com/titles/bhcldev
http://forums.pragprog.com/forums/bhcldev

