
Extracted from:

Small, Sharp Software Tools
Harness the Combinatoric Power of
Command-Line Tools and Utilities

This PDF file contains pages extracted from Small, Sharp Software Tools, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Small, Sharp Software Tools
Harness the Combinatoric Power of
Command-Line Tools and Utilities

Brian P. Hogan

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Susan Conant
Development Editor: Tammy Coron
Copy Editor: L. Sakhi MacMillan
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-296-1
Book version: P1.0—May 2019

https://pragprog.com
support@pragprog.com
rights@pragprog.com

CHAPTER 4

Working with Files and Directories
You probably spend a lot of your time working with files and directories. You
write programs, change configuration files, copy and move files around your
projects, rename files, and maybe even back things up.

In the last chapter, you learned how to use the CLI to move around the
filesystem. In this chapter, you’ll manipulate that filesystem. You’ll concatenate
files, read larger files, and manage permissions. You’ll move, rename, and
copy files and directories, all without ever using a graphical tool.

Creating Files
In Creating and Reading Files, on page ?, you learned how to use the echo
command and redirection to create files. This is one of many ways to create
files on the command line. Let’s look at a few alternatives.

If you only need to create an empty file, you can use the touch command. This
command is designed to update the timestamp of a file. It’s common for pro-
grams to watch a file for changes and then react to those changes by executing
a process. For example, you might have a process that runs tests whenever
a file changes, but you don’t actually want to open the file and make a change.
You can use touch to modify the file without actually changing the contents.
This would then trigger the program or process monitoring the file.

However, if the specified file doesn’t exist, the touch command creates the file.
This makes touch a very popular tool for creating files quickly.

Test it out. Navigate to your home directory:

$ cd

Now, use touch to create a new file named file.txt:

$ touch file.txt

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/bhcldev
http://forums.pragprog.com/forums/bhcldev

Verify that it exists by using the ls -lh command:

$ ls -lh file.txt
-rw-r--r-- 1 brian brian 0 Mar 2 12:50 file.txt

The file doesn’t have any contents, but it was created successfully. This is a
handy way to create a blank file that you can then modify elsewhere.

Remember that touch updates a file’s timestamp whenever you run it. Wait a
minute and run the touch command on this file again. Then get a new listing:

$ touch file.txt
$ ls -alh file.txt
-rw-r--r-- 1 brian brian 0 Mar 2 12:51 file.txt

You’ll notice that the timestamp has changed.

You can use touch to operate on more than one file at once. All you have to do
is provide it with a list of filenames, separated with spaces. Give it a try:

$ touch index.html about.html style.css

This creates the three files, index.html, about.html, and style.css in the current
directory. Verify this with the ls command:

$ ls file.txt index.html about.html style.css
about.html file.txt index.html style.css

You’re not limited in where you create the files. You can create a file in the current
directory and in the Documents directory as well, all with a single command:

$ touch this_goes_in_home.txt Documents/this_goes_in_Documents.txt

By specifying a relative path or a full path to a directory, you can create files
anywhere on your filesystem.

Creating Files with Content
The touch command creates blank text files, and as you already know, you
can capture the output of programs to a text file by redirecting the program’s
output to a file. Let’s review this by creating a new text file in the current
directory that contains the text “Hello, World”. Use the echo command to print
out the text and then redirect it to a file:

$ echo 'Hello, World' > hello.txt

If the file hello.txt doesn’t exist, it gets created. If it does exist, it gets overwritten.
So you have to be incredibly careful with this command. You could acciden-
tally erase a file’s contents this way.

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/bhcldev
http://forums.pragprog.com/forums/bhcldev

To append text to the file instead of overwriting its contents, use >> instead
of >. So, to append another line to the file hello.txt, you can do this:

$ echo 'How are you today' >> hello.txt

You can use the > and >> symbols to redirect any program’s output messages
to a file. For example, if you wanted to save the list of files in the current
directory to a file, it’s as easy as:

$ ls -alh > files.txt

You can then append the output of another command to the same file
using >>:

$ ls -alh ~/Documents >> files.txt

The files.txt file will contain the output of both commands. You’ll dive into how
this works in greater detail in Chapter 5, Streams of Text, on page ?.

Writing Multiple Lines to a File
You can create files from program output, and you can create a new file with
a line of text, but you can also create a new file with multiple lines of text
right from the command line, without opening a text editor.

In Creating and Reading Files, on page ?, you used the cat command to view
the contents of files. The cat command reads the contents of files and displays
them to the screen. However, you can use cat to create new files. Let’s create
a simple text file with several lines. Execute this command:

$ cat > names.txt

After pressing Enter , you’ll see a different prompt and a flashing cursor:

>

The cat command is waiting for input. Type the following lines, pressing Enter
after each one:

> Homer
> Marge
> Bart
> Lisa
> Maggie

After the last line of the file, press Enter one more time, then press Ctrl+d . This
saves the contents to the file.

• Click HERE to purchase this book now. discuss

Creating Files • 7

http://pragprog.com/titles/bhcldev
http://forums.pragprog.com/forums/bhcldev

Use cat again to view the file to ensure the contents were saved:

$ cat names.txt
Homer
Marge
Bart
Lisa
Maggie

Here’s how that worked. You told cat to start accepting text from the keyboard.
Every time you pressed the Enter key, cat saved the line to the file. Pressing
Enter after the last line (Maggie) saved that line to the file as well. The sequence
Ctrl+d exits the process. If you forget to press Enter after the last line, you
won’t save the last line to the file.

To avoid that issue entirely, tell cat to terminate when it sees a specific string
on its own line. Try this command:

$ cat << 'EOF' > names.txt
> Homer
> Marge
> Bart
> Lisa
> Maggie
> EOF➤

Instead of a blank line at the end, you use the text EOF. Then, when you invoke
cat, you tell it to take in keyboard input until it sees the line EOF. The text EOF
is short for “end of file,” and it’s mostly a convention; you can use any combi-
nation of characters you want, like DONE or END.

This is a great way to create files without switching to your GUI and breaking
your flow. You’ll use this throughout the book and explore how it works in
Chapter 5, Streams of Text, on page ?.

Combining Files
The cat command is the go-to tool for looking at the contents of small files. If
you send multiple files to the cat command, it will read them all in the order
you specified. Try it. Create two files in your current directory:

$ echo "Hello" > hello.txt
$ echo "Goodbye" > goodbye.txt

Now, use the cat command to read both files:

$ cat hello.txt goodbye.txt
Hello
Goodbye

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/bhcldev
http://forums.pragprog.com/forums/bhcldev

As you can see, the output shows the content of both files. The cat command
is actually designed to concatenate files. And as you’ve seen already, you can
redirect standard output to a file using the > symbol.

Let’s see this in action. Websites often have a common header and footer,
and instead of repeating that content in every file, you can store the common
contents in templates, and then place the page-specific bits in their own files.
Try it out.

First, use cat to create a new file named header.html with the following content:

files/header.html
<!DOCTYPE html>
<html lang=“en-US”>

<head>
<meta charset=“utf-8”>
<title>My Site</title>

</head>
<body>

<div class=“content”>
<header>

<h1>AwesomeCo</h1>
</header>

Create it with the following command:

$ cat << 'EOF' > header.html
> <!DOCTYPE html>
> <html lang=“en-US”>
> <head>
> <meta charset=“utf-8”>
> <title>My Site</title>
> </head>
> <body>
> <div class=“content”>
> <header>
> <h1>AwesomeCo</h1>
> </header>
> EOF

Next, create a file named footer.html with the following content:

files/footer.html
<footer>

<small>Copyright © 2019 AwesomeCo</small>
</footer>

</div>
</body>

</html>

• Click HERE to purchase this book now. discuss

Creating Files • 9

http://media.pragprog.com/titles/bhcldev/code/files/header.html
http://media.pragprog.com/titles/bhcldev/code/files/footer.html
http://pragprog.com/titles/bhcldev
http://forums.pragprog.com/forums/bhcldev

Use the same method to create this file too:

$ cat << 'EOF' > footer.html
> <footer>
> <small>Copyright © 2019 AwesomeCo</small>
> </footer>
> </div>
> </body>
> </html>
> EOF

Finally, create a file named main.html that contains this:

files/main.html
<main>

<h2>Welcome!</h2>
<p>This is the main page!</p>

</main>

Here’s the command:

$ cat << 'EOF' > main.html
> <main>
> <h2>Welcome!</h2>
> <p>This is the main page!</p>
> </main>
> EOF

Now, join the three files to create a new file named index.html using cat:

$ cat header.html main.html footer.html > index.html

Print out the contents of the new file to verify that it contains the output you
expected:

$ cat index.html
<!DOCTYPE html>
<html lang=“en-US”>

<head>
<meta charset=“utf-8”>
<title>My Site</title>

</head>
<body>

<div class=“content”>
<header>

<h1>AwesomeCo</h1>
</header>

<main>
<h2>Welcome!</h2>
<p>This is the main page!</p>

</main>

• 10

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/bhcldev/code/files/main.html
http://pragprog.com/titles/bhcldev
http://forums.pragprog.com/forums/bhcldev

<footer>
<small>Copyright © 2019 AwesomeCo</small>

</footer>
</div>

</body>
</html>

The lines in all three files were combined into a single file. The indentation
looks off since we didn’t indent the contents of the main.html in this example.

Reading small files is easy. Let’s explore looking at larger ones.

Reading Larger Files
The cat command reads small files nicely. But as you learned in Redirecting
Streams of Text, on page ?, some files are too large to read with cat because
they scroll off the screen, so you can use the more command to display a file
one page at a time. Let’s review that command to explore the contents of the
system log, the log that holds messages from various applications and oper-
ating system processes.

On Ubuntu, you’ll find this in /var/log/syslog:

$ more /var/log/syslog

On macOS, the system log is located at /var/log/system.log instead:

$ more /var/log/system.log

The first page of the file will display on the screen. Press the Enter key to see
the next line of the file, and the Spacebar key to jump to the next page. Press
q to quit, or page to the end of the file to return to your prompt.

The more command is a legacy program designed to read a file forward only,
with no way to go backward. That’s why you have the newer less command.

Less Is More
The less program was introduced to overcome some of the limitations more
comes with. With less, you can navigate through the file using arrow keys and
even perform some searches. For example, pressing / and typing in a search
term followed by the Enter key jumps to the first occurrence of the search term
and highlights the other entries.

On many systems, the more command is simply an alias of the less command,
which causes some confusion. If you don’t see any difference between these
programs on your system, then that’s probably what’s going on.

• Click HERE to purchase this book now. discuss

Reading Larger Files • 11

http://pragprog.com/titles/bhcldev
http://forums.pragprog.com/forums/bhcldev

less has many more features, and as a result it’s also a lot bigger. Some
smaller Linux distributions don’t include it at all, so it’s good to know the
differences between these commands. But for daily use, your OS includes
the less command, so you should be comfortable using that.

Both less and more are handy ways to read through a large amount of text, but
sometimes you don’t need to see the whole file. Sometimes you only want to
look at the beginning or the end.

Reading the Beginning and End of a File
Sometimes the most interesting information in a file is in the first few lines
or in the last few lines. That’s where the head and tail commands come in
handy.

The head command reads the first ten lines from a file and displays them to
the screen:

$ head /var/log/syslog

If you want a different number of lines from the file, use the -n argument to
specify the number of lines you want to see. To grab the first line in the
/var/log/syslog file, use this command:

$ head -n 1 /var/log/syslog

The tail command displays the last ten lines from a file by default.

$ tail /var/log/syslog

Like head, tail also supports specifying the number of lines you want to view
by using the -n switch. However, with tail, the count starts from the end of the
file. Try it out with the names.txt file you created in Writing Multiple Lines to a
File, on page 7. Use the -n switch to show only the last two names in the file:

$ tail -n 2 names.txt
Lisa
Maggie

If you specify the number with a plus sign, tail will start counting from that
line and display everything until the end of the file. Give it a try. Read the
names.txt file but don’t display the first two lines. Instead, tell tail to start with
the third line:

$ tail -n +3 names.txt
Bart
Lisa
Maggie

• 12

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/bhcldev
http://forums.pragprog.com/forums/bhcldev

The first two lines are skipped. This is also a handy way of removing lines
from a file or splitting a file. Use the > symbol to send the result to a new file
instead of to the screen:

$ tail -n +3 names.txt > children.txt
$ cat children.txt
Bart
Lisa
Maggie

tail has another powerful feature that comes in handy when you’re debugging
things. You can use tail to “follow” a file and see its changes on the screen.
Give it a try:

$ tail -f /var/log/syslog

You’ll see the last few lines of the file displayed on your screen, but you won’t
be returned to your prompt. As changes happen in the file, your screen will
update, displaying the new lines. This is incredibly helpful when viewing the
logs for an application or other process in real time.

Press Ctrl+c to stop watching the file and return to your prompt.

You’ll work with less, head, and tail again in Creating Pipelines of Data, on page
?. But let’s shift focus and look at creating files outside of the home directory.

• Click HERE to purchase this book now. discuss

Reading Larger Files • 13

http://pragprog.com/titles/bhcldev
http://forums.pragprog.com/forums/bhcldev

